|
--- |
|
language: |
|
- es |
|
license: cc-by-sa-4.0 |
|
library_name: span-marker |
|
tags: |
|
- span-marker |
|
- token-classification |
|
- ner |
|
- named-entity-recognition |
|
- generated_from_span_marker_trainer |
|
datasets: |
|
- conll2002 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
widget: |
|
- text: Por otro lado, el primer ministro portugués, Antonio Guterres, presidente |
|
de turno del Consejo Europeo, recibió hoy al ministro del Interior de Colombia, |
|
Hugo de la Calle, enviado especial del presidente de su país, Andrés Pastrana. |
|
- text: Los consejeros de la Presidencia, Gaspar Zarrías, de Justicia, Carmen Hermosín, |
|
y de Asuntos Sociales, Isaías Pérez Saldaña, darán comienzo mañana a los turnos |
|
de comparecencias de los miembros del Gobierno andaluz en el Parlamento autonómico |
|
para informar de las líneas de actuación de sus departamentos. |
|
- text: '(SV2147) PP: PROBLEMAS INTERNOS PSOE INTERFIEREN EN POLITICA DE LA JUNTA |
|
Córdoba (EFE).' |
|
- text: Cuando vino a Soria, en febrero de 1998, para sustituir al entonces destituido |
|
Antonio Gómez, estaba dirigiendo al Badajoz B en tercera división y consiguió |
|
con el Numancia la permanencia en la última jornada frente al Hércules. |
|
- text: El ministro ecuatoriano de Defensa, Hugo Unda, aseguró hoy que las Fuerzas |
|
Armadas respetarán la decisión del Parlamento sobre la amnistía para los involucrados |
|
en la asonada golpista del pasado 21 de enero, cuando fue derrocado el presidente |
|
Jamil Mahuad. |
|
pipeline_tag: token-classification |
|
base_model: bert-base-cased |
|
model-index: |
|
- name: SpanMarker with bert-base-cased on conll2002 |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Named Entity Recognition |
|
dataset: |
|
name: Unknown |
|
type: conll2002 |
|
split: test |
|
metrics: |
|
- type: f1 |
|
value: 0.8200812536273941 |
|
name: F1 |
|
- type: precision |
|
value: 0.8331367924528302 |
|
name: Precision |
|
- type: recall |
|
value: 0.8074285714285714 |
|
name: Recall |
|
--- |
|
|
|
# SpanMarker with bert-base-cased on conll2002 |
|
|
|
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2002](https://huggingface.co/datasets/conll2002) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-cased](https://huggingface.co/bert-base-cased) as the underlying encoder. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SpanMarker |
|
- **Encoder:** [bert-base-cased](https://huggingface.co/bert-base-cased) |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Maximum Entity Length:** 8 words |
|
- **Training Dataset:** [conll2002](https://huggingface.co/datasets/conll2002) |
|
- **Language:** es |
|
- **License:** cc-by-sa-4.0 |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) |
|
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:------------------------------------------------------------------| |
|
| LOC | "Victoria", "Australia", "Melbourne" | |
|
| MISC | "Ley", "Ciudad", "CrimeNet" | |
|
| ORG | "Tribunal Supremo", "EFE", "Commonwealth" | |
|
| PER | "Abogado General del Estado", "Daryl Williams", "Abogado General" | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Precision | Recall | F1 | |
|
|:--------|:----------|:-------|:-------| |
|
| **all** | 0.8331 | 0.8074 | 0.8201 | |
|
| LOC | 0.8471 | 0.7759 | 0.8099 | |
|
| MISC | 0.7092 | 0.4264 | 0.5326 | |
|
| ORG | 0.7854 | 0.8558 | 0.8191 | |
|
| PER | 0.9471 | 0.9329 | 0.9400 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
```python |
|
from span_marker import SpanMarkerModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("span_marker_model_id") |
|
# Run inference |
|
entities = model.predict("(SV2147) PP: PROBLEMAS INTERNOS PSOE INTERFIEREN EN POLITICA DE LA JUNTA Córdoba (EFE).") |
|
``` |
|
|
|
### Downstream Use |
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
```python |
|
from span_marker import SpanMarkerModel, Trainer |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("span_marker_model_id") |
|
|
|
# Specify a Dataset with "tokens" and "ner_tag" columns |
|
dataset = load_dataset("conll2003") # For example CoNLL2003 |
|
|
|
# Initialize a Trainer using the pretrained model & dataset |
|
trainer = Trainer( |
|
model=model, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["validation"], |
|
) |
|
trainer.train() |
|
trainer.save_model("span_marker_model_id-finetuned") |
|
``` |
|
</details> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:----------------------|:----|:--------|:-----| |
|
| Sentence length | 0 | 31.8014 | 1238 | |
|
| Entities per sentence | 0 | 2.2583 | 160 | |
|
|
|
### Training Hyperparameters |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training Results |
|
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |
|
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| |
|
| 0.1164 | 200 | 0.0260 | 0.6907 | 0.5358 | 0.6035 | 0.9264 | |
|
| 0.2328 | 400 | 0.0199 | 0.7567 | 0.6384 | 0.6925 | 0.9414 | |
|
| 0.3491 | 600 | 0.0176 | 0.7773 | 0.7273 | 0.7515 | 0.9563 | |
|
| 0.4655 | 800 | 0.0157 | 0.8066 | 0.7598 | 0.7825 | 0.9601 | |
|
| 0.5819 | 1000 | 0.0158 | 0.8031 | 0.7413 | 0.7710 | 0.9605 | |
|
| 0.6983 | 1200 | 0.0156 | 0.7975 | 0.7598 | 0.7782 | 0.9609 | |
|
| 0.8147 | 1400 | 0.0139 | 0.8210 | 0.7615 | 0.7901 | 0.9625 | |
|
| 0.9310 | 1600 | 0.0129 | 0.8426 | 0.7848 | 0.8127 | 0.9651 | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SpanMarker: 1.5.0 |
|
- Transformers: 4.38.2 |
|
- PyTorch: 2.2.1+cu121 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
``` |
|
@software{Aarsen_SpanMarker, |
|
author = {Aarsen, Tom}, |
|
license = {Apache-2.0}, |
|
title = {{SpanMarker for Named Entity Recognition}}, |
|
url = {https://github.com/tomaarsen/SpanMarkerNER} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |