distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 1.2162
- Accuracy: 0.84
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.2216 | 1.0 | 57 | 2.1520 | 0.45 |
1.704 | 2.0 | 114 | 1.6254 | 0.59 |
1.1885 | 3.0 | 171 | 1.1741 | 0.7 |
0.8575 | 4.0 | 228 | 0.9653 | 0.7 |
0.6822 | 5.0 | 285 | 0.8219 | 0.81 |
0.5103 | 6.0 | 342 | 0.7254 | 0.8 |
0.4386 | 7.0 | 399 | 0.6772 | 0.84 |
0.2862 | 8.0 | 456 | 0.7047 | 0.8 |
0.1639 | 9.0 | 513 | 0.7126 | 0.8 |
0.0998 | 10.0 | 570 | 0.8339 | 0.77 |
0.0585 | 11.0 | 627 | 0.7380 | 0.8 |
0.0256 | 12.0 | 684 | 0.7606 | 0.84 |
0.0201 | 13.0 | 741 | 0.8292 | 0.83 |
0.0058 | 14.0 | 798 | 0.9495 | 0.83 |
0.0029 | 15.0 | 855 | 1.1009 | 0.82 |
0.0016 | 16.0 | 912 | 1.1451 | 0.82 |
0.001 | 17.0 | 969 | 1.1886 | 0.84 |
0.0071 | 18.0 | 1026 | 1.1731 | 0.84 |
0.0004 | 19.0 | 1083 | 1.2255 | 0.84 |
0.0003 | 20.0 | 1140 | 1.2162 | 0.84 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 61
Model tree for sfedar/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert