Edit model card

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2162
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2216 1.0 57 2.1520 0.45
1.704 2.0 114 1.6254 0.59
1.1885 3.0 171 1.1741 0.7
0.8575 4.0 228 0.9653 0.7
0.6822 5.0 285 0.8219 0.81
0.5103 6.0 342 0.7254 0.8
0.4386 7.0 399 0.6772 0.84
0.2862 8.0 456 0.7047 0.8
0.1639 9.0 513 0.7126 0.8
0.0998 10.0 570 0.8339 0.77
0.0585 11.0 627 0.7380 0.8
0.0256 12.0 684 0.7606 0.84
0.0201 13.0 741 0.8292 0.83
0.0058 14.0 798 0.9495 0.83
0.0029 15.0 855 1.1009 0.82
0.0016 16.0 912 1.1451 0.82
0.001 17.0 969 1.1886 0.84
0.0071 18.0 1026 1.1731 0.84
0.0004 19.0 1083 1.2255 0.84
0.0003 20.0 1140 1.2162 0.84

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
220
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for sfedar/distilhubert-finetuned-gtzan

Finetuned
(386)
this model

Dataset used to train sfedar/distilhubert-finetuned-gtzan

Evaluation results