DareBeagel-2x7B / README.md
shadowml's picture
Adding Evaluation Results (#3)
056c7f6 verified
---
license: apache-2.0
tags:
- moe
- merge
- mergekit
- lazymergekit
- mlabonne/NeuralBeagle14-7B
- mlabonne/NeuralDaredevil-7B
model-index:
- name: DareBeagel-2x7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.01
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shadowml/DareBeagel-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.12
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shadowml/DareBeagel-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shadowml/DareBeagel-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.09
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shadowml/DareBeagel-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.72
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shadowml/DareBeagel-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shadowml/DareBeagel-2x7B
name: Open LLM Leaderboard
---
# Beyonder-2x7B-v2
Beyonder-2x7B-v2 is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
* [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B)
## 🧩 Configuration
```yaml
base_model: mlabonne/NeuralBeagle14-7B
gate_mode: random
experts:
- source_model: mlabonne/NeuralBeagle14-7B
positive_prompts: [""]
- source_model: mlabonne/NeuralDaredevil-7B
positive_prompts: [""]
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "shadowml/Beyonder-2x7B-v2"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_shadowml__DareBeagel-2x7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.49|
|AI2 Reasoning Challenge (25-Shot)|72.01|
|HellaSwag (10-Shot) |88.12|
|MMLU (5-Shot) |64.51|
|TruthfulQA (0-shot) |69.09|
|Winogrande (5-shot) |82.72|
|GSM8k (5-shot) |70.51|