Mixolar-4x7b / README.md
shadowml's picture
Update README.md
9513a91 verified
|
raw
history blame
2.2 kB
---
license: apache-2.0
tags:
- moe
- merge
- mergekit
---
# Mixolar-4x7b
This model is a Mixure of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models:
* [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
* [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1)
* [rishiraj/meow](https://huggingface.co/rishiraj/meow)
* [kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2](https://huggingface.co/kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2)
## 🧩 Configuration
```yaml
base_model: kyujinpy/Sakura-SOLAR-Instruct
gate_mode: hidden
experts:
- source_model: kyujinpy/Sakura-SOLAR-Instruct
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
negative_prompts:
- "mathematics"
- "reasoning"
- source_model: jeonsworld/CarbonVillain-en-10.7B-v1
positive_prompts:
- "write"
- "AI"
- "text"
- "paragraph"
negative_prompts:
- "mathematics"
- "reasoning"
- source_model: rishiraj/meow
positive_prompts:
- "chat"
- "say"
- "what"
negative_prompts:
- "mathematics"
- "reasoning"
- source_model: kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
negative_prompts:
- "chat"
- "assistant"
- "storywriting"
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Mixolar-4x7b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```