|
--- |
|
tags: |
|
- image-classification |
|
- tensorflow |
|
- keras |
|
- computer-vision |
|
- animal-recognition |
|
license: apache-2.0 |
|
library_name: keras |
|
language: en |
|
datasets: |
|
- custom-dataset |
|
metrics: |
|
- accuracy |
|
model_creator: AEROVERSE |
|
model_type: Custom CNN |
|
num_classes: 10 |
|
training_data: Custom animal dataset |
|
validation_split: 20% |
|
epochs: 500 |
|
early_stopping: patience=5, restore_best_weights=True |
|
dropout: 0.5 |
|
optimizer: Adam |
|
loss: sparse_categorical_crossentropy |
|
input_shape: (256, 256, 3) |
|
output_activation: softmax |
|
checkpoint: best_model.weights.h5 |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
# Animal Recognition Model |
|
|
|
## Model Overview |
|
This model is designed to classify images of animals into predefined categories. It uses a ResNet50V2 base model and has been trained on a custom dataset. |
|
|
|
## Classes |
|
The model was trained on the following classes: |
|
- cat |
|
- dog |
|
- horse |
|
- lion |
|
- tiger |
|
- elephant |
|
|
|
## Usage |
|
1. Load the model using TensorFlow/Keras. |
|
2. Preprocess the input image to a size of 256x256 and normalize it. |
|
3. Pass the preprocessed image to the model for prediction. |
|
|
|
```python |
|
from keras.models import load_model |
|
import numpy as np |
|
from tensorflow.keras.utils import load_img, img_to_array |
|
|
|
def predict_image(image_path, model): |
|
img = load_img(image_path, target_size=(256, 256)) |
|
img_array = img_to_array(img) / 255.0 |
|
img_array = np.expand_dims(img_array, axis=0) |
|
prediction = model.predict(img_array) |
|
return np.argmax(prediction, axis=1) |
|
|
|
model = load_model('best_model.weights.h5') |
|
predicted_class = predict_image('image.jpg', model) |
|
print(f"Predicted class: {predicted_class}") |
|
``` |
|
|
|
## Training Details |
|
- **Base Model:** ResNet50V2 (pretrained on ImageNet) |
|
- **Dataset:** Custom animal dataset |
|
- **Optimizer:** Adam |
|
- **Loss Function:** Sparse Categorical Crossentropy |
|
- **Metrics:** Accuracy |
|
- **Augmentation:** Applied during training |
|
|
|
## Model Performance |
|
Will be updated soon |