shanchen's picture
Upload folder using huggingface_hub
475bf6c verified
|
raw
history blame
1.77 kB
---
tags:
- merge
- mergekit
- lazymergekit
- shanchen/llama3-8B-slerp-med-chinese
- shenzhi-wang/Llama3-8B-Chinese-Chat
base_model:
- shanchen/llama3-8B-slerp-med-chinese
- shenzhi-wang/Llama3-8B-Chinese-Chat
---
# llama3-8B-slerp-biomed-chat-chinese
llama3-8B-slerp-biomed-chat-chinese is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [shanchen/llama3-8B-slerp-med-chinese](https://huggingface.co/shanchen/llama3-8B-slerp-med-chinese)
* [shenzhi-wang/Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: shanchen/llama3-8B-slerp-med-chinese
layer_range: [0,32]
- model: shenzhi-wang/Llama3-8B-Chinese-Chat
layer_range: [0,32]
merge_method: slerp
base_model: shenzhi-wang/Llama3-8B-Chinese-Chat
parameters:
t:
- filter: self_attn
value: [0.3, 0.5, 0.5, 0.7, 1]
- filter: mlp
value: [1, 0.7, 0.5, 0.5, 0.3]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "shanchen/llama3-8B-slerp-biomed-chat-chinese"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```