whisper-base-300v2 / README.md
shane062's picture
End of training
fc6c6eb verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-base-300v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 86.48648648648648

whisper-base-300v2

This model is a fine-tuned version of openai/whisper-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0748
  • Wer Ortho: 86.4865
  • Wer: 86.4865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 30
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.129 20.0 60 1.0256 72.9730 72.9730
0.0005 40.0 120 1.0519 81.0811 81.0811
0.0001 60.0 180 1.0650 86.4865 86.4865
0.0001 80.0 240 1.0748 86.4865 86.4865

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1