whisper-tiny-300 / README.md
shane062's picture
End of training
a37578f verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-tiny-300
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 113.51351351351352

whisper-tiny-300

This model is a fine-tuned version of openai/whisper-tiny on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Wer Ortho: 108.1081
  • Wer: 113.5135

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 30
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0 20.0 60 nan 108.1081 113.5135
0.0 40.0 120 nan 108.1081 113.5135
0.0 60.0 180 nan 108.1081 113.5135
0.0 80.0 240 nan 108.1081 113.5135

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1