metadata
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: xlm-roberta-base_latin_kin-amh-eng_train_spearman_corr
results: []
xlm-roberta-base_latin_kin-amh-eng_train_spearman_corr
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0290
- Spearman Corr: 0.7237
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
---|---|---|---|---|
No log | 0.59 | 200 | 0.0279 | 0.6205 |
No log | 1.17 | 400 | 0.0265 | 0.6575 |
No log | 1.76 | 600 | 0.0380 | 0.6844 |
0.0373 | 2.35 | 800 | 0.0307 | 0.7164 |
0.0373 | 2.93 | 1000 | 0.0340 | 0.6776 |
0.0373 | 3.52 | 1200 | 0.0312 | 0.7050 |
0.0244 | 4.11 | 1400 | 0.0298 | 0.7134 |
0.0244 | 4.69 | 1600 | 0.0285 | 0.7190 |
0.0244 | 5.28 | 1800 | 0.0278 | 0.7217 |
0.0244 | 5.87 | 2000 | 0.0298 | 0.7006 |
0.0185 | 6.45 | 2200 | 0.0258 | 0.7114 |
0.0185 | 7.04 | 2400 | 0.0295 | 0.7164 |
0.0185 | 7.62 | 2600 | 0.0333 | 0.7204 |
0.0144 | 8.21 | 2800 | 0.0300 | 0.7201 |
0.0144 | 8.8 | 3000 | 0.0326 | 0.7290 |
0.0144 | 9.38 | 3200 | 0.0292 | 0.7114 |
0.0144 | 9.97 | 3400 | 0.0289 | 0.7052 |
0.0109 | 10.56 | 3600 | 0.0336 | 0.7125 |
0.0109 | 11.14 | 3800 | 0.0307 | 0.7147 |
0.0109 | 11.73 | 4000 | 0.0308 | 0.7174 |
0.0086 | 12.32 | 4200 | 0.0285 | 0.7217 |
0.0086 | 12.9 | 4400 | 0.0288 | 0.7083 |
0.0086 | 13.49 | 4600 | 0.0290 | 0.7237 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2