|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-b8-e10-1024-128 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-b8-e10-1024-128 |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.3822 |
|
- Rouge1: 13.327 |
|
- Rouge2: 4.8244 |
|
- Rougel: 13.1978 |
|
- Rougelsum: 13.2133 |
|
- Gen Len: 17.5592 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 4.7372 | 1.0 | 1357 | 3.8287 | 9.3951 | 3.6576 | 9.342 | 9.3047 | 12.6653 | |
|
| 4.3162 | 2.0 | 2714 | 3.6750 | 10.9224 | 4.1119 | 10.8209 | 10.8235 | 15.0997 | |
|
| 4.1726 | 3.0 | 4071 | 3.5668 | 11.7438 | 4.2353 | 11.6204 | 11.6087 | 16.5169 | |
|
| 4.0439 | 4.0 | 5428 | 3.5002 | 12.402 | 4.4267 | 12.2785 | 12.2924 | 17.0402 | |
|
| 3.9978 | 5.0 | 6785 | 3.4494 | 12.7762 | 4.5509 | 12.6699 | 12.6829 | 17.2466 | |
|
| 3.9687 | 6.0 | 8142 | 3.4229 | 12.9652 | 4.6727 | 12.8555 | 12.8761 | 17.4303 | |
|
| 3.8639 | 7.0 | 9499 | 3.4058 | 13.4216 | 4.784 | 13.3097 | 13.2988 | 17.4252 | |
|
| 3.8474 | 8.0 | 10856 | 3.3924 | 13.2422 | 4.7672 | 13.1416 | 13.12 | 17.5046 | |
|
| 3.843 | 9.0 | 12213 | 3.3845 | 13.2519 | 4.8713 | 13.1421 | 13.1304 | 17.5371 | |
|
| 3.8545 | 10.0 | 13570 | 3.3822 | 13.327 | 4.8244 | 13.1978 | 13.2133 | 17.5592 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.13.3 |
|
|