vit-lr-0.01

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Accuracy: 0.4997
  • Precision: 0.4902
  • Recall: 0.4997
  • F1: 0.4904

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.01
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.4629 1.0 321 nan 0.4997 0.4902 0.4997 0.4904
0.0 2.0 642 nan 0.4997 0.4902 0.4997 0.4904
0.0096 3.0 963 nan 0.0316 0.0010 0.0316 0.0019
0.0 4.0 1284 nan 0.0316 0.0010 0.0316 0.0019
0.0 5.0 1605 nan 0.0316 0.0010 0.0316 0.0019
0.0 6.0 1926 nan 0.0316 0.0010 0.0316 0.0019
0.0 7.0 2247 nan 0.0316 0.0010 0.0316 0.0019
0.0 8.0 2568 nan 0.0316 0.0010 0.0316 0.0019
0.0 9.0 2889 nan 0.0316 0.0010 0.0316 0.0019
0.0 10.0 3210 nan 0.0316 0.0010 0.0316 0.0019
0.0 11.0 3531 nan 0.0316 0.0010 0.0316 0.0019

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
194
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for sharren/vit-lr-0.01

Finetuned
(560)
this model