FT_3 / README.md
sheepy928's picture
Model save
91f21c0
|
raw
history blame
3.48 kB
metadata
license: mit
base_model: sheepy928/default
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: FT_3
    results: []

FT_3

This model is a fine-tuned version of sheepy928/default on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7570
  • Accuracy: 0.7393
  • F1: 0.6292
  • Recall: 0.7393
  • Precision: 0.7147
  • Combined Score: 0.7056

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision Combined Score
0.6785 1.6 300 0.7930 0.7387 0.6276 0.7387 0.5456 0.6627
0.5583 3.19 600 0.6910 0.7613 0.7316 0.7613 0.7072 0.7404
0.7857 4.79 900 0.6515 0.7387 0.6276 0.7387 0.5456 0.6627
0.6309 6.38 1200 0.5592 0.848 0.8270 0.848 0.8382 0.8403
0.2216 7.98 1500 0.5708 0.8773 0.8432 0.8773 0.8496 0.8619
0.3214 9.57 1800 0.4550 0.896 0.8584 0.896 0.8776 0.8820
0.7521 11.17 2100 0.3819 0.884 0.8423 0.884 0.8059 0.8541
0.5048 12.77 2400 0.6582 0.7387 0.6276 0.7387 0.5456 0.6627
0.6435 14.36 2700 0.5365 0.8467 0.8092 0.8467 0.7798 0.8206
0.9304 15.96 3000 0.7577 0.7387 0.6289 0.7387 0.6302 0.6841
0.7902 17.55 3300 0.7684 0.7387 0.6289 0.7387 0.6302 0.6841
0.6364 19.15 3600 0.7638 0.7387 0.6289 0.7387 0.6302 0.6841
0.6738 20.74 3900 0.7769 0.7393 0.6292 0.7393 0.7147 0.7056
0.8142 22.34 4200 0.7443 0.7393 0.6292 0.7393 0.7147 0.7056
0.8184 23.94 4500 0.7635 0.7393 0.6292 0.7393 0.7147 0.7056
0.7562 25.53 4800 0.7467 0.7393 0.6292 0.7393 0.7147 0.7056
0.5699 27.13 5100 0.7867 0.7393 0.6292 0.7393 0.7147 0.7056
0.761 28.72 5400 0.7570 0.7393 0.6292 0.7393 0.7147 0.7056

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1