shihab17 commited on
Commit
a17e40e
·
1 Parent(s): acc363f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -20
README.md CHANGED
@@ -17,6 +17,27 @@ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentence
17
 
18
  <!--- Describe your model here -->
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  ## Usage (Sentence-Transformers)
21
 
22
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
@@ -73,26 +94,6 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
73
  print("Sentence embeddings:")
74
  print(sentence_embeddings)
75
  ```
76
- ## How to get sentence similarity
77
-
78
- ```python
79
- from sentence_transformers import SentenceTransformer
80
- from sentence_transformers.util import pytorch_cos_sim
81
-
82
-
83
- transformer = SentenceTransformer('shihab17/bangla-sentence-transformer')
84
-
85
- sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
86
-
87
- sentences_embeddings = transformer.encode(sentences)
88
-
89
- for i in range(len(sentences)):
90
- for j in range(i, len(sentences)):
91
- sen_1 = sentences[i]
92
- sen_2 = sentences[j]
93
- sim_score = float(pytorch_cos_sim(sentences_embeddings[i], sentences_embeddings[j]))
94
- print(sen_1, '----->', sen_2, sim_score)
95
- ```
96
 
97
 
98
  ## Evaluation Results
 
17
 
18
  <!--- Describe your model here -->
19
 
20
+ ## How to get sentence similarity
21
+
22
+ ```python
23
+ from sentence_transformers import SentenceTransformer
24
+ from sentence_transformers.util import pytorch_cos_sim
25
+
26
+
27
+ transformer = SentenceTransformer('shihab17/bangla-sentence-transformer')
28
+
29
+ sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','এইবার কমলার ফলনা ভাল হয়নি', 'বাচ্চাটি দেখতে আপেলের মত সুন্দর','আপেলের জুস আমার অনেক প্রিয়']
30
+
31
+ sentences_embeddings = transformer.encode(sentences)
32
+
33
+ for i in range(len(sentences)):
34
+ for j in range(i, len(sentences)):
35
+ sen_1 = sentences[i]
36
+ sen_2 = sentences[j]
37
+ sim_score = float(pytorch_cos_sim(sentences_embeddings[i], sentences_embeddings[j]))
38
+ print(sen_1, '----->', sen_2, sim_score)
39
+ ```
40
+
41
  ## Usage (Sentence-Transformers)
42
 
43
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
94
  print("Sentence embeddings:")
95
  print(sentence_embeddings)
96
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
 
99
  ## Evaluation Results