Update README.md
Browse files
README.md
CHANGED
@@ -17,6 +17,27 @@ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentence
|
|
17 |
|
18 |
<!--- Describe your model here -->
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
## Usage (Sentence-Transformers)
|
21 |
|
22 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
@@ -73,26 +94,6 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
73 |
print("Sentence embeddings:")
|
74 |
print(sentence_embeddings)
|
75 |
```
|
76 |
-
## How to get sentence similarity
|
77 |
-
|
78 |
-
```python
|
79 |
-
from sentence_transformers import SentenceTransformer
|
80 |
-
from sentence_transformers.util import pytorch_cos_sim
|
81 |
-
|
82 |
-
|
83 |
-
transformer = SentenceTransformer('shihab17/bangla-sentence-transformer')
|
84 |
-
|
85 |
-
sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
|
86 |
-
|
87 |
-
sentences_embeddings = transformer.encode(sentences)
|
88 |
-
|
89 |
-
for i in range(len(sentences)):
|
90 |
-
for j in range(i, len(sentences)):
|
91 |
-
sen_1 = sentences[i]
|
92 |
-
sen_2 = sentences[j]
|
93 |
-
sim_score = float(pytorch_cos_sim(sentences_embeddings[i], sentences_embeddings[j]))
|
94 |
-
print(sen_1, '----->', sen_2, sim_score)
|
95 |
-
```
|
96 |
|
97 |
|
98 |
## Evaluation Results
|
|
|
17 |
|
18 |
<!--- Describe your model here -->
|
19 |
|
20 |
+
## How to get sentence similarity
|
21 |
+
|
22 |
+
```python
|
23 |
+
from sentence_transformers import SentenceTransformer
|
24 |
+
from sentence_transformers.util import pytorch_cos_sim
|
25 |
+
|
26 |
+
|
27 |
+
transformer = SentenceTransformer('shihab17/bangla-sentence-transformer')
|
28 |
+
|
29 |
+
sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','এইবার কমলার ফলনা ভাল হয়নি', 'বাচ্চাটি দেখতে আপেলের মত সুন্দর','আপেলের জুস আমার অনেক প্রিয়']
|
30 |
+
|
31 |
+
sentences_embeddings = transformer.encode(sentences)
|
32 |
+
|
33 |
+
for i in range(len(sentences)):
|
34 |
+
for j in range(i, len(sentences)):
|
35 |
+
sen_1 = sentences[i]
|
36 |
+
sen_2 = sentences[j]
|
37 |
+
sim_score = float(pytorch_cos_sim(sentences_embeddings[i], sentences_embeddings[j]))
|
38 |
+
print(sen_1, '----->', sen_2, sim_score)
|
39 |
+
```
|
40 |
+
|
41 |
## Usage (Sentence-Transformers)
|
42 |
|
43 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
94 |
print("Sentence embeddings:")
|
95 |
print(sentence_embeddings)
|
96 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
## Evaluation Results
|