How to use

You can use this model directly with a pipeline:

from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("shihab17/bn-to-en-translation")
model = AutoModelForSeq2SeqLM.from_pretrained("shihab17/bn-to-en-translation")

sentence = 'ম্যাচ শেষে পুরস্কার বিতরণের মঞ্চে তামিমের মুখে মোস্তাফিজের প্রশংসা শোনা গেল'

translator = pipeline("translation_en_to_bn", model=model, tokenizer=tokenizer)
output = translator(sentence)
print(output)

bengali-en-to-bn

This model is a fine-tuned version of Helsinki-NLP/opus-mt-bn-en on the kde4 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6885
  • Bleu: 50.9475
  • Gen Len: 6.7043

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
1.8866 1.0 2047 1.6397 39.6617 8.0651
1.5769 2.0 4094 1.6160 33.0247 8.9865
1.3622 3.0 6141 1.6189 53.483 6.6037
1.2317 4.0 8188 1.6280 51.6882 6.762
1.1248 5.0 10235 1.6450 53.1619 6.5515
1.0297 6.0 12282 1.6587 52.3224 6.5905
0.9632 7.0 14329 1.6733 52.3362 6.5441
0.8831 8.0 16376 1.6802 49.3544 6.8272
0.8291 9.0 18423 1.6868 49.9486 6.792
0.8175 10.0 20470 1.6885 50.9475 6.7043

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
13
Safetensors
Model size
76.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train shihab17/bn-to-en-translation

Evaluation results