Built with Axolotl

See axolotl config

axolotl version: 0.6.0

# We train the exact same as 02-llama31 but we swap gradient accum and micro bs (should be same but faster?)

base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

# User Liger
plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

chat_template: llama3
datasets:
  - path: /fsx/ubuntu/meti/data/shisa-v1-bestseq-reannoatated-filtered
    # type: sharegpt deprecated
    type: chat_template
    field_messages: conversations
    message_field_role: from
    message_field_content: value
shuffle_merged_datasets: false
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/ablation-20-rafbestseq.1epoch-shisa-v2-llama-3.1-8b-lr8e6

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

# marginal difference
neftune_noise_alpha: 5

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: ablation-20-rafbestseq.1epoch-shisa-v2-llama-3.1-8b-lr8e6

gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
save_total_limit: 1 # Only store a single checkpoint
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.00
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

outputs/ablation-20-rafbestseq.1epoch-shisa-v2-llama-3.1-8b-lr8e6

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4640

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
0.7727 0.0019 1 0.5912
0.6626 0.5005 257 0.4640

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for shisa-ai/ablation-20-rafbestseq.1epoch-shisa-v2-llama-3.1-8b-lr8e6

Finetuned
(918)
this model