See axolotl config
axolotl version: 0.6.0
# train w/ shisa-ai/shisa-v1-athenev2-reannotated-filtered
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
# User Liger
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
chat_template: llama3
datasets:
- path: shisa-ai/shisa-v1-athenev2-reannotated-filtered
# type: sharegpt deprecated
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/ablation-27-rafathenev2.9epochs-shisa-v2-llama-3.1-8b-lr8e6
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# marginal difference
neftune_noise_alpha: 5
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: ablation-27-rafathenev2.9epochs-shisa-v2-llama-3.1-8b-lr8e6
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 9
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
# save_total_limit: 1 # Only store a single checkpoint
debug:
deepspeed: zero3_bf16.json
weight_decay: 1e-4
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/ablation-27-rafathenev2.9epochs-shisa-v2-llama-3.1-8b-lr8e6
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the shisa-ai/shisa-v1-athenev2-reannotated-filtered dataset. It achieves the following results on the evaluation set:
- Loss: 0.8370
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 77
- num_epochs: 9.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8213 | 0.0058 | 1 | 0.5773 |
0.6142 | 0.5029 | 87 | 0.4698 |
0.5227 | 1.0058 | 174 | 0.4466 |
0.5139 | 1.5087 | 261 | 0.4429 |
0.4186 | 2.0116 | 348 | 0.4493 |
0.3932 | 2.5145 | 435 | 0.4562 |
0.3489 | 3.0173 | 522 | 0.5003 |
0.3096 | 3.5202 | 609 | 0.4974 |
0.213 | 4.0231 | 696 | 0.5810 |
0.2192 | 4.5260 | 783 | 0.5577 |
0.1408 | 5.0289 | 870 | 0.6616 |
0.1438 | 5.5318 | 957 | 0.6315 |
0.0956 | 6.0347 | 1044 | 0.7405 |
0.1174 | 6.5376 | 1131 | 0.7074 |
0.0563 | 7.0405 | 1218 | 0.8059 |
0.0642 | 7.5434 | 1305 | 0.7843 |
0.0456 | 8.0462 | 1392 | 0.8510 |
0.0464 | 8.5491 | 1479 | 0.8370 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for shisa-ai/ablation-27-rafathenev2.9epochs-shisa-v2-llama-3.1-8b-lr8e6
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct