SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("shivamgoel97/mediumfinetunesentence")
# Run inference
sentences = [
    'What should a 5G/LTE Home Internet Messaging Support Agent do if a customer with Fixed Wireless Access (FWA) needs assistance and the dedicated FWA Support team is occupied?',
    '5G/LTE Home Internet Messaging Support Agents in Messaging provide assistance to 5G and LTE Home Internet customers. Customers with Fixed Wireless Access (FWA) and who indicate they need assistance with their FWA device route to a dedicated FWA Support team. However, volume may overflow if those agents are occupied. Assist these customers BAU by providing billing and technical support. Refer to these resources if skilled for Tier 2 and receive a 5G or LTE Home Internet customer: Verizon 5G Internet Gateway - Install / Set Up 5G Home - Window Mount Verizon 5G Internet Gateway - Install / Set Up 5G Home - Wall Mount Verizon 5G Internet Gateway - Install / Set Up 5G Home - Speed Test 5G Home Internet Extender Setup Router Setup Verizon 5G Internet Gateway - Install/Setup 5G Home - Signal Test 5G Resource Center YouTube Video - How to: Self setup your Verizon 5G Internet Gateway - Internal Only)',
    'Context: form and return it to [email protected] after purchasing an eFax license Porting may take up to 5 weeks to be completed.Government Process to Enable Ordering eFax Billing eFax licenses are billed at the account level and reflected on the wireless bill. The number of licenses does not have to match the number of wireless lines. Customers may distribute licenses across multiple carriers. After order submission and POC approval, customer billing begins. Cancellation Policy All sales are final for the subscription term/contract initially purchased month-to-month contract (no commitment). Customers who purchase month-to-month licenses can cancel at the end of the month.Table: <table border="1" cellpadding="5" cellspacing="0" width="100%"><tbody><tr><th style="text-align: center;" valign="top" width="5%">Stage</th><th style="text-align: left;" valign="top" width="15%">Who</th><th style="text-align: left;" valign="top">Does What</th></tr><tr><td style="text-align: center;" valign="top" width="5%">1</td><td style="text-align: left;" valign="top" width="15%"><p>SLED Sales\xa0<span style="background-color: transparent;">Representative</span></p></td><td style="text-align: left;" valign="top"><p>Confirms the customer\'s contract is amended to include eFax.<br/></p><ul><li>If the Contract includes eFax:<br/><ol><li>Access the\xa0<a href="https://vzweb.verizon.com/state-local-government" target="_blank">State and Local Government Contracts</a> web page.<br/></li><li>Select the black oval to request a profile update for BuSS product eFax.</li></ol></li><li>If the agreement does not include eFax:<br/><ol><li>Access the\xa0<a href="https://vzweb.verizon.com/state-local-government" target="_blank">State and Local Government Contracts</a>\xa0web page.</li><li>Select the red oval to request an amendment to add eFax to the agreement.</li><li>Select the green oval to upload the amendments for implementation (once the amendment is executed).<br/></li></ol></li></ul></td></tr><tr><td style="text-align: center;" valign="top" width="5%">2</td><td style="text-align: left;" valign="top" width="15%"><p>Contract\xa0<span style="background-color: transparent;">Management Team</span></p></td><td style="text-align: left;" valign="top"><p>Reviews BuSS request, and if approved forwards the request to the BFO to enable\xa0<span style="background-color: transparent;">the customer profile for eFAX (based on contract availability).</span></p></td></tr><tr><td style="text-align: center;" valign="top" width="5%">3</td><td style="text-align: left;" valign="top" width="15%">BFO</td><td style="text-align: left;" valign="top">Completes request, and replies all upon completion.<br/></td></tr><tr><td style="text-align: center;" valign="top" width="5%">4</td><td style="text-align: left;" valign="top" width="15%"><p>SLED Sales\xa0<span style="background-color: transparent;">Representative</span></p></td><td style="text-align: left;" valign="top">Works with the customer to complete the license order.<br/></td></tr><tr><td style="text-align: center;" valign="top" width="5%">5</td><td style="text-align: left;" valign="top" width="15%">eFax<br/></td><td style="text-align: left;" valign="top"><p>Activates the licenses and sends a welcome / get started email to the customer’s email sales\xa0<span style="background-color: transparent;">entered in POS.</span></p></td></tr></tbody></table>',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,500 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string int
    details
    • min: 11 tokens
    • mean: 24.76 tokens
    • max: 61 tokens
    • min: 55 tokens
    • mean: 211.78 tokens
    • max: 256 tokens
    • 0: ~24.00%
    • 1: ~76.00%
  • Samples:
    sentence_0 sentence_1 label
    What is the internal transfer number for Spanish HSI Tech Support for Consumer HSI? Context: CRTC. See Ordering a Return Label (ACSS) for more information.Refer to the return and exchange periods below (by purchase location): Returns Exchanges Note: For any exceptions to the return or exchange period, use the Blind Return flow process and remark the orders with: Original order number Location Reason for the exceptionDevice returns (not exchanges) reset the customer's contract and upgrade dates. Verizon requires a contract correction to: Verify all device returns. Reset the customer's contract and upgrade dates. When the date does not systematically correct, validate the: Device was returned. Customer requested a disconnect and returned to a previous device.Table:
    Purchase LocationReturn Period
    Verizon stores and Indirect locations 0
    What is the time frame within which customers must call and request a return for a Stream TV device to be eligible for a refund from Verizon? Review the following guidelines before processing a device payment agreement: Canceling a device payment agreement erases all of the monthly installments the customer has paid towards a device. Example: If the customer has paid 3 payments, the bill is refunded for all 3 payments made. If the customer has made no payments, canceling a device payment agreement makes the agreement act like it never existed and the customer does not see it on the bill. In order to cancel a device payment agreement, verify the following: The status of the device payment agreement prior to requesting an agreement cancellation. Refer to the Loan Status Codes Grid for additional information. Device payment agreements in Paid status cannot be canceled. The device has been returned to a store or warehouse depending upon where the order was processed. If a store processed the order, verbally confirm the store has the device at the store location and attempted a return. If a direct fulfillment order, the customer ... 0
    Which SKU must be added to the order when placing an order for BuSS solutions? Context: multiple licenses, the page limits are aggregated. Faxing to international phone numbers is not available at this time.Ordering All solutions in the BuSS are billed on the Account Level. Customers may purchase BuSS solutions through these Verizon POS systems: B360 ACSS OMNI Retail OMNI Telesales Customers can mix and match licenses. When placing the order, the EFAX_OVERAGE SKU must be added to the order. Only 1 EFAX_OVERAGE SKU is required per account.Customer Payment Methods Retail, Retail SMB and Telesales B2B can only sell through Bill To Account (BTA). B2B and ACSS may sell through BTA and Purchasing Order (PO).Standard PricingTable:
    StageWhoDoes What
    11
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    
  • Training Hyperparameters

    Non-Default Hyperparameters

    • multi_dataset_batch_sampler: round_robin

    All Hyperparameters

    Click to expand
    • overwrite_output_dir: False
    • do_predict: False
    • eval_strategy: no
    • prediction_loss_only: True
    • per_device_train_batch_size: 8
    • per_device_eval_batch_size: 8
    • per_gpu_train_batch_size: None
    • per_gpu_eval_batch_size: None
    • gradient_accumulation_steps: 1
    • eval_accumulation_steps: None
    • torch_empty_cache_steps: None
    • learning_rate: 5e-05
    • weight_decay: 0.0
    • adam_beta1: 0.9
    • adam_beta2: 0.999
    • adam_epsilon: 1e-08
    • max_grad_norm: 1
    • num_train_epochs: 3
    • max_steps: -1
    • lr_scheduler_type: linear
    • lr_scheduler_kwargs: {}
    • warmup_ratio: 0.0
    • warmup_steps: 0
    • log_level: passive
    • log_level_replica: warning
    • log_on_each_node: True
    • logging_nan_inf_filter: True
    • save_safetensors: True
    • save_on_each_node: False
    • save_only_model: False
    • restore_callback_states_from_checkpoint: False
    • no_cuda: False
    • use_cpu: False
    • use_mps_device: False
    • seed: 42
    • data_seed: None
    • jit_mode_eval: False
    • use_ipex: False
    • bf16: False
    • fp16: False
    • fp16_opt_level: O1
    • half_precision_backend: auto
    • bf16_full_eval: False
    • fp16_full_eval: False
    • tf32: None
    • local_rank: 0
    • ddp_backend: None
    • tpu_num_cores: None
    • tpu_metrics_debug: False
    • debug: []
    • dataloader_drop_last: False
    • dataloader_num_workers: 0
    • dataloader_prefetch_factor: None
    • past_index: -1
    • disable_tqdm: False
    • remove_unused_columns: True
    • label_names: None
    • load_best_model_at_end: False
    • ignore_data_skip: False
    • fsdp: []
    • fsdp_min_num_params: 0
    • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
    • fsdp_transformer_layer_cls_to_wrap: None
    • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
    • deepspeed: None
    • label_smoothing_factor: 0.0
    • optim: adamw_torch
    • optim_args: None
    • adafactor: False
    • group_by_length: False
    • length_column_name: length
    • ddp_find_unused_parameters: None
    • ddp_bucket_cap_mb: None
    • ddp_broadcast_buffers: False
    • dataloader_pin_memory: True
    • dataloader_persistent_workers: False
    • skip_memory_metrics: True
    • use_legacy_prediction_loop: False
    • push_to_hub: False
    • resume_from_checkpoint: None
    • hub_model_id: None
    • hub_strategy: every_save
    • hub_private_repo: None
    • hub_always_push: False
    • gradient_checkpointing: False
    • gradient_checkpointing_kwargs: None
    • include_inputs_for_metrics: False
    • include_for_metrics: []
    • eval_do_concat_batches: True
    • fp16_backend: auto
    • push_to_hub_model_id: None
    • push_to_hub_organization: None
    • mp_parameters:
    • auto_find_batch_size: False
    • full_determinism: False
    • torchdynamo: None
    • ray_scope: last
    • ddp_timeout: 1800
    • torch_compile: False
    • torch_compile_backend: None
    • torch_compile_mode: None
    • dispatch_batches: None
    • split_batches: None
    • include_tokens_per_second: False
    • include_num_input_tokens_seen: False
    • neftune_noise_alpha: None
    • optim_target_modules: None
    • batch_eval_metrics: False
    • eval_on_start: False
    • use_liger_kernel: False
    • eval_use_gather_object: False
    • average_tokens_across_devices: False
    • prompts: None
    • batch_sampler: batch_sampler
    • multi_dataset_batch_sampler: round_robin

    Training Logs

    Epoch Step Training Loss
    0.3808 500 0.1354
    0.7616 1000 0.1184
    1.1424 1500 0.1072
    1.5232 2000 0.0968
    1.9040 2500 0.095
    2.2848 3000 0.0871
    2.6657 3500 0.0832

    Framework Versions

    • Python: 3.11.11
    • Sentence Transformers: 3.3.1
    • Transformers: 4.47.1
    • PyTorch: 2.5.1+cu121
    • Accelerate: 1.2.1
    • Datasets: 3.2.0
    • Tokenizers: 0.21.0

    Citation

    BibTeX

    Sentence Transformers

    @inproceedings{reimers-2019-sentence-bert,
        title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
        author = "Reimers, Nils and Gurevych, Iryna",
        booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
        month = "11",
        year = "2019",
        publisher = "Association for Computational Linguistics",
        url = "https://arxiv.org/abs/1908.10084",
    }
    
Downloads last month
1
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shivamgoel97/mediumfinetunesentence

Finetuned
(204)
this model