bert-finetuned-ner / README.md
sickcell69
Training complete
1fa0284 verified
|
raw
history blame
2.42 kB
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results: []

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3391
  • Precision: 0.8826
  • Recall: 0.9138
  • F1: 0.8979
  • Accuracy: 0.9518

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0318 1.0 680 0.4800 0.8075 0.8632 0.8344 0.9183
0.0206 2.0 1360 0.4822 0.8332 0.8634 0.8480 0.9233
0.0116 3.0 2040 0.5227 0.8167 0.8683 0.8417 0.9211
0.0093 4.0 2720 0.5366 0.8230 0.8749 0.8482 0.9246
0.0077 5.0 3400 0.5384 0.8370 0.8688 0.8526 0.9249
0.0061 6.0 4080 0.5450 0.8418 0.8754 0.8583 0.9275
0.0048 7.0 4760 0.5570 0.8346 0.8765 0.8550 0.9262
0.0084 8.0 5440 0.5565 0.8353 0.8765 0.8554 0.9261
0.0073 9.0 6120 0.5693 0.8353 0.8751 0.8547 0.9261
0.0058 10.0 6800 0.5688 0.8361 0.8766 0.8559 0.9265

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1