metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4022
- Precision: 0.7421
- Recall: 0.7951
- F1: 0.7677
- Accuracy: 0.8883
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.7548 | 1.0 | 680 | 0.4630 | 0.6857 | 0.7150 | 0.7000 | 0.8615 |
0.4124 | 2.0 | 1360 | 0.4143 | 0.7299 | 0.7698 | 0.7493 | 0.8786 |
0.2546 | 3.0 | 2040 | 0.4022 | 0.7421 | 0.7951 | 0.7677 | 0.8883 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1