bert-finetuned-ner / README.md
sickcell69
Training complete
ed89425 verified
|
raw
history blame
3.29 kB
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results: []

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5707
  • Precision: 0.8258
  • Recall: 0.8753
  • F1: 0.8498
  • Accuracy: 0.9254

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1966 1.0 680 0.3961 0.7705 0.8096 0.7896 0.8971
0.1487 2.0 1360 0.4435 0.7607 0.8258 0.7919 0.8950
0.1258 3.0 2040 0.4180 0.7727 0.8450 0.8072 0.9052
0.1163 4.0 2720 0.4227 0.7890 0.8418 0.8145 0.9078
0.1019 5.0 3400 0.4721 0.7664 0.8630 0.8118 0.9068
0.0763 6.0 4080 0.4444 0.8033 0.8542 0.8280 0.9172
0.0641 7.0 4760 0.4551 0.8189 0.8550 0.8366 0.9179
0.0615 8.0 5440 0.4615 0.8167 0.8640 0.8397 0.9202
0.0468 9.0 6120 0.4922 0.8104 0.8668 0.8376 0.9205
0.0381 10.0 6800 0.4991 0.8213 0.8642 0.8422 0.9210
0.0381 11.0 7480 0.4950 0.8298 0.8593 0.8443 0.9230
0.0289 12.0 8160 0.5273 0.8220 0.8717 0.8461 0.9232
0.026 13.0 8840 0.5366 0.8207 0.8700 0.8446 0.9230
0.0227 14.0 9520 0.5466 0.8240 0.8698 0.8463 0.9230
0.02 15.0 10200 0.5530 0.8250 0.8710 0.8474 0.9247
0.0173 16.0 10880 0.5571 0.8235 0.8726 0.8473 0.9244
0.0152 17.0 11560 0.5551 0.8282 0.8700 0.8486 0.9248
0.0146 18.0 12240 0.5686 0.8270 0.8727 0.8492 0.9246
0.0142 19.0 12920 0.5687 0.8258 0.8753 0.8498 0.9259
0.0135 20.0 13600 0.5707 0.8258 0.8753 0.8498 0.9254

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1