metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5707
- Precision: 0.8258
- Recall: 0.8753
- F1: 0.8498
- Accuracy: 0.9254
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1966 | 1.0 | 680 | 0.3961 | 0.7705 | 0.8096 | 0.7896 | 0.8971 |
0.1487 | 2.0 | 1360 | 0.4435 | 0.7607 | 0.8258 | 0.7919 | 0.8950 |
0.1258 | 3.0 | 2040 | 0.4180 | 0.7727 | 0.8450 | 0.8072 | 0.9052 |
0.1163 | 4.0 | 2720 | 0.4227 | 0.7890 | 0.8418 | 0.8145 | 0.9078 |
0.1019 | 5.0 | 3400 | 0.4721 | 0.7664 | 0.8630 | 0.8118 | 0.9068 |
0.0763 | 6.0 | 4080 | 0.4444 | 0.8033 | 0.8542 | 0.8280 | 0.9172 |
0.0641 | 7.0 | 4760 | 0.4551 | 0.8189 | 0.8550 | 0.8366 | 0.9179 |
0.0615 | 8.0 | 5440 | 0.4615 | 0.8167 | 0.8640 | 0.8397 | 0.9202 |
0.0468 | 9.0 | 6120 | 0.4922 | 0.8104 | 0.8668 | 0.8376 | 0.9205 |
0.0381 | 10.0 | 6800 | 0.4991 | 0.8213 | 0.8642 | 0.8422 | 0.9210 |
0.0381 | 11.0 | 7480 | 0.4950 | 0.8298 | 0.8593 | 0.8443 | 0.9230 |
0.0289 | 12.0 | 8160 | 0.5273 | 0.8220 | 0.8717 | 0.8461 | 0.9232 |
0.026 | 13.0 | 8840 | 0.5366 | 0.8207 | 0.8700 | 0.8446 | 0.9230 |
0.0227 | 14.0 | 9520 | 0.5466 | 0.8240 | 0.8698 | 0.8463 | 0.9230 |
0.02 | 15.0 | 10200 | 0.5530 | 0.8250 | 0.8710 | 0.8474 | 0.9247 |
0.0173 | 16.0 | 10880 | 0.5571 | 0.8235 | 0.8726 | 0.8473 | 0.9244 |
0.0152 | 17.0 | 11560 | 0.5551 | 0.8282 | 0.8700 | 0.8486 | 0.9248 |
0.0146 | 18.0 | 12240 | 0.5686 | 0.8270 | 0.8727 | 0.8492 | 0.9246 |
0.0142 | 19.0 | 12920 | 0.5687 | 0.8258 | 0.8753 | 0.8498 | 0.9259 |
0.0135 | 20.0 | 13600 | 0.5707 | 0.8258 | 0.8753 | 0.8498 | 0.9254 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1