t5-small-scientific_lay_summarisation

This model is a fine-tuned version of t5-small on the scientific_lay_summarisation dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0503
  • Rouge1: 0.0546
  • Rouge2: 0.0154
  • Rougel: 0.0461
  • Rougelsum: 0.0462
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 272 3.1627 0.048 0.0123 0.0402 0.0402 19.0
3.6506 2.0 544 3.0881 0.0524 0.0143 0.0441 0.0442 19.0
3.6506 3.0 816 3.0586 0.0543 0.0155 0.0461 0.0462 19.0
3.2737 4.0 1088 3.0503 0.0546 0.0154 0.0461 0.0462 19.0

Framework versions

  • Transformers 4.27.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results