Files changed (1) hide show
  1. README.md +92 -84
README.md CHANGED
@@ -1,84 +1,92 @@
1
- ---
2
- language:
3
- - en
4
- ---
5
-
6
- # Model Card for `passage-ranker-v1-XS-en`
7
-
8
- This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
9
- used to order search results.
10
-
11
- Model name: `passage-ranker-v1-XS-en`
12
-
13
- ## Supported Languages
14
-
15
- The model was trained and tested in the following languages:
16
-
17
- - English
18
-
19
- ## Scores
20
-
21
- | Metric | Value |
22
- |:--------------------|------:|
23
- | Relevance (NDCG@10) | 0.438 |
24
-
25
- Note that the relevance score is computed as an average over 14 retrieval datasets (see
26
- [details below](#evaluation-metrics)).
27
-
28
- ## Inference Times
29
-
30
- | GPU | Batch size 32 |
31
- |:-----------|--------------:|
32
- | NVIDIA A10 | 8 ms |
33
- | NVIDIA T4 | 20 ms |
34
-
35
- The inference times only measure the time the model takes to process a single batch, it does not include pre- or
36
- post-processing steps like the tokenization.
37
-
38
- ## Requirements
39
-
40
- - Minimal Sinequa version: 11.10.0
41
- - GPU memory usage: 170 MiB
42
-
43
- Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
44
- size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
45
- can be around 0.5 to 1 GiB depending on the used GPU.
46
-
47
- ## Model Details
48
-
49
- ### Overview
50
-
51
- - Number of parameters: 11 million
52
- - Base language model: [English BERT-Mini](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4)
53
- - Insensitive to casing and accents
54
- - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
55
-
56
- ### Training Data
57
-
58
- - Probably-Asked Questions
59
- ([Paper](https://arxiv.org/abs/2102.07033),
60
- [Official Page](https://github.com/facebookresearch/PAQ))
61
-
62
- ### Evaluation Metrics
63
-
64
- To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
65
- [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
66
-
67
- | Dataset | NDCG@10 |
68
- |:------------------|--------:|
69
- | Average | 0.438 |
70
- | | |
71
- | Arguana | 0.524 |
72
- | CLIMATE-FEVER | 0.150 |
73
- | DBPedia Entity | 0.338 |
74
- | FEVER | 0.706 |
75
- | FiQA-2018 | 0.269 |
76
- | HotpotQA | 0.630 |
77
- | MS MARCO | 0.328 |
78
- | NFCorpus | 0.340 |
79
- | NQ | 0.429 |
80
- | Quora | 0.722 |
81
- | SCIDOCS | 0.141 |
82
- | SciFact | 0.627 |
83
- | TREC-COVID | 0.628 |
84
- | Webis-Touche-2020 | 0.306 |
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ ---
5
+
6
+ # Model Card for `passage-ranker-v1-XS-en`
7
+
8
+ This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results.
9
+
10
+ Model name: `passage-ranker-v1-XS-en`
11
+
12
+ ## Supported Languages
13
+
14
+ The model was trained and tested in the following languages:
15
+
16
+ - English
17
+
18
+ ## Scores
19
+
20
+ | Metric | Value |
21
+ |:--------------------|------:|
22
+ | Relevance (NDCG@10) | 0.438 |
23
+
24
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
25
+ [details below](#evaluation-metrics)).
26
+
27
+ ## Inference Times
28
+
29
+ | GPU | Quantization type | Batch size 1 | Batch size 32 |
30
+ |:------------------------------------------|:------------------|---------------:|---------------:|
31
+ | NVIDIA A10 | FP16 | 1 ms | 2 ms |
32
+ | NVIDIA A10 | FP32 | 1 ms | 8 ms |
33
+ | NVIDIA T4 | FP16 | 1 ms | 6 ms |
34
+ | NVIDIA T4 | FP32 | 3 ms | 23 ms |
35
+ | NVIDIA L4 | FP16 | 1 ms | 3 ms |
36
+ | NVIDIA L4 | FP32 | 2 ms | 8 ms |
37
+
38
+ ## Gpu Memory usage
39
+
40
+ | Quantization type | Memory |
41
+ |:-------------------------------------------------|-----------:|
42
+ | FP16 | 150 MiB |
43
+ | FP32 | 200 MiB |
44
+
45
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
46
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
47
+ can be around 0.5 to 1 GiB depending on the used GPU.
48
+
49
+ ## Requirements
50
+
51
+ - Minimal Sinequa version: 11.10.0
52
+ - Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
53
+ - [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)
54
+
55
+ ## Model Details
56
+
57
+ ### Overview
58
+
59
+ - Number of parameters: 11 million
60
+ - Base language model: [English BERT-Mini](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4)
61
+ - Insensitive to casing and accents
62
+ - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
63
+
64
+ ### Training Data
65
+
66
+ - Probably-Asked Questions
67
+ ([Paper](https://arxiv.org/abs/2102.07033),
68
+ [Official Page](https://github.com/facebookresearch/PAQ))
69
+
70
+ ### Evaluation Metrics
71
+
72
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
73
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
74
+
75
+ | Dataset | NDCG@10 |
76
+ |:------------------|--------:|
77
+ | Average | 0.438 |
78
+ | | |
79
+ | Arguana | 0.524 |
80
+ | CLIMATE-FEVER | 0.150 |
81
+ | DBPedia Entity | 0.338 |
82
+ | FEVER | 0.706 |
83
+ | FiQA-2018 | 0.269 |
84
+ | HotpotQA | 0.630 |
85
+ | MS MARCO | 0.328 |
86
+ | NFCorpus | 0.340 |
87
+ | NQ | 0.429 |
88
+ | Quora | 0.722 |
89
+ | SCIDOCS | 0.141 |
90
+ | SciFact | 0.627 |
91
+ | TREC-COVID | 0.628 |
92
+ | Webis-Touche-2020 | 0.306 |