|
from typing import Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import requests |
|
from mteb import DRESModel |
|
from tqdm import tqdm |
|
|
|
|
|
class SionicEmbeddingModel(DRESModel): |
|
def __init__(self, url: str, instruction: Optional[str] = None, batch_size: int = 128, dimension: int = 2048, **kwargs) -> None: |
|
self.url = url |
|
self.instruction = instruction |
|
self.batch_size = batch_size |
|
self.dimension = dimension |
|
|
|
def get_embeddings(self, queries: List[str]) -> np.ndarray: |
|
return np.asarray( |
|
requests.post(self.url, json={'inputs': queries}).json()['embedding'], |
|
dtype=np.float32, |
|
).reshape(len(queries), self.dimension) |
|
|
|
def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray: |
|
return self.encode([f'{self.instruction}{query}' for query in queries]) |
|
|
|
def encode_corpus(self, corpus: List[Union[Dict[str, str], str]], **kwargs) -> np.ndarray: |
|
sentences: List[str] = ( |
|
[f"{doc.get('title', '')} {doc['text']}".strip() for doc in corpus] |
|
if isinstance(corpus[0], dict) |
|
else corpus |
|
) |
|
|
|
return self.encode(sentences) |
|
|
|
def encode(self, sentences: List[str], **kwargs) -> np.ndarray: |
|
return np.concatenate( |
|
[ |
|
self.get_embeddings(sentences[idx:idx + self.batch_size]) |
|
for idx in tqdm(range(0, len(sentences), self.batch_size), desc='encode') |
|
], |
|
axis=0, |
|
) |
|
|
|
|