llm3br256
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the brasingh_publicis_f5f dataset. It achieves the following results on the evaluation set:
- Loss: 0.0205
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1038 | 0.0606 | 5 | 0.0979 |
0.0759 | 0.1212 | 10 | 0.0765 |
0.069 | 0.1818 | 15 | 0.0683 |
0.0729 | 0.2424 | 20 | 0.0620 |
0.0545 | 0.3030 | 25 | 0.0571 |
0.0589 | 0.3636 | 30 | 0.0528 |
0.0461 | 0.4242 | 35 | 0.0501 |
0.0522 | 0.4848 | 40 | 0.0493 |
0.052 | 0.5455 | 45 | 0.0483 |
0.0459 | 0.6061 | 50 | 0.0458 |
0.0363 | 0.6667 | 55 | 0.0434 |
0.0553 | 0.7273 | 60 | 0.0418 |
0.0444 | 0.7879 | 65 | 0.0403 |
0.0469 | 0.8485 | 70 | 0.0397 |
0.0417 | 0.9091 | 75 | 0.0386 |
0.0388 | 0.9697 | 80 | 0.0372 |
0.0309 | 1.0303 | 85 | 0.0358 |
0.0487 | 1.0909 | 90 | 0.0354 |
0.0348 | 1.1515 | 95 | 0.0340 |
0.0308 | 1.2121 | 100 | 0.0334 |
0.0318 | 1.2727 | 105 | 0.0330 |
0.028 | 1.3333 | 110 | 0.0322 |
0.0311 | 1.3939 | 115 | 0.0321 |
0.0382 | 1.4545 | 120 | 0.0315 |
0.0316 | 1.5152 | 125 | 0.0304 |
0.0278 | 1.5758 | 130 | 0.0299 |
0.0285 | 1.6364 | 135 | 0.0292 |
0.0257 | 1.6970 | 140 | 0.0285 |
0.0244 | 1.7576 | 145 | 0.0281 |
0.0256 | 1.8182 | 150 | 0.0278 |
0.0338 | 1.8788 | 155 | 0.0270 |
0.0309 | 1.9394 | 160 | 0.0262 |
0.0378 | 2.0 | 165 | 0.0261 |
0.0275 | 2.0606 | 170 | 0.0263 |
0.0225 | 2.1212 | 175 | 0.0259 |
0.0232 | 2.1818 | 180 | 0.0256 |
0.0193 | 2.2424 | 185 | 0.0255 |
0.0251 | 2.3030 | 190 | 0.0253 |
0.0228 | 2.3636 | 195 | 0.0249 |
0.0195 | 2.4242 | 200 | 0.0249 |
0.0219 | 2.4848 | 205 | 0.0241 |
0.0184 | 2.5455 | 210 | 0.0238 |
0.0199 | 2.6061 | 215 | 0.0236 |
0.023 | 2.6667 | 220 | 0.0232 |
0.0227 | 2.7273 | 225 | 0.0234 |
0.0206 | 2.7879 | 230 | 0.0230 |
0.0217 | 2.8485 | 235 | 0.0225 |
0.0186 | 2.9091 | 240 | 0.0224 |
0.0201 | 2.9697 | 245 | 0.0220 |
0.0147 | 3.0303 | 250 | 0.0220 |
0.0142 | 3.0909 | 255 | 0.0226 |
0.0149 | 3.1515 | 260 | 0.0218 |
0.0151 | 3.2121 | 265 | 0.0215 |
0.0174 | 3.2727 | 270 | 0.0217 |
0.0172 | 3.3333 | 275 | 0.0213 |
0.017 | 3.3939 | 280 | 0.0211 |
0.0223 | 3.4545 | 285 | 0.0212 |
0.0144 | 3.5152 | 290 | 0.0211 |
0.0125 | 3.5758 | 295 | 0.0208 |
0.0163 | 3.6364 | 300 | 0.0207 |
0.015 | 3.6970 | 305 | 0.0207 |
0.0154 | 3.7576 | 310 | 0.0206 |
0.0186 | 3.8182 | 315 | 0.0203 |
0.0135 | 3.8788 | 320 | 0.0202 |
0.0159 | 3.9394 | 325 | 0.0201 |
0.0211 | 4.0 | 330 | 0.0200 |
0.0134 | 4.0606 | 335 | 0.0202 |
0.0113 | 4.1212 | 340 | 0.0206 |
0.0117 | 4.1818 | 345 | 0.0208 |
0.0108 | 4.2424 | 350 | 0.0209 |
0.012 | 4.3030 | 355 | 0.0207 |
0.0111 | 4.3636 | 360 | 0.0206 |
0.0118 | 4.4242 | 365 | 0.0205 |
0.0099 | 4.4848 | 370 | 0.0206 |
0.0118 | 4.5455 | 375 | 0.0206 |
0.0119 | 4.6061 | 380 | 0.0206 |
0.0114 | 4.6667 | 385 | 0.0206 |
0.0109 | 4.7273 | 390 | 0.0206 |
0.0124 | 4.7879 | 395 | 0.0205 |
0.0111 | 4.8485 | 400 | 0.0206 |
0.012 | 4.9091 | 405 | 0.0206 |
0.0104 | 4.9697 | 410 | 0.0205 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 4
Model tree for sizhkhy/brasingh_publicis_f5f
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
unsloth/Llama-3.2-3B-Instruct