|
--- |
|
library_name: peft |
|
license: other |
|
base_model: unsloth/Llama-3.2-3B-Instruct |
|
tags: |
|
- llama-factory |
|
- lora |
|
- unsloth |
|
- generated_from_trainer |
|
model-index: |
|
- name: llm3br256 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llm3br256 |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the centime dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0123 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.0612 | 0.0449 | 5 | 0.0560 | |
|
| 0.0411 | 0.0898 | 10 | 0.0357 | |
|
| 0.0353 | 0.1347 | 15 | 0.0301 | |
|
| 0.0286 | 0.1796 | 20 | 0.0264 | |
|
| 0.0282 | 0.2245 | 25 | 0.0239 | |
|
| 0.0223 | 0.2694 | 30 | 0.0224 | |
|
| 0.0242 | 0.3143 | 35 | 0.0209 | |
|
| 0.0211 | 0.3591 | 40 | 0.0203 | |
|
| 0.0178 | 0.4040 | 45 | 0.0201 | |
|
| 0.0206 | 0.4489 | 50 | 0.0196 | |
|
| 0.0196 | 0.4938 | 55 | 0.0193 | |
|
| 0.0173 | 0.5387 | 60 | 0.0193 | |
|
| 0.0184 | 0.5836 | 65 | 0.0193 | |
|
| 0.0194 | 0.6285 | 70 | 0.0191 | |
|
| 0.0182 | 0.6734 | 75 | 0.0185 | |
|
| 0.0169 | 0.7183 | 80 | 0.0183 | |
|
| 0.0176 | 0.7632 | 85 | 0.0178 | |
|
| 0.0158 | 0.8081 | 90 | 0.0176 | |
|
| 0.02 | 0.8530 | 95 | 0.0172 | |
|
| 0.0165 | 0.8979 | 100 | 0.0173 | |
|
| 0.0181 | 0.9428 | 105 | 0.0168 | |
|
| 0.0176 | 0.9877 | 110 | 0.0168 | |
|
| 0.0184 | 1.0348 | 115 | 0.0183 | |
|
| 0.0162 | 1.0797 | 120 | 0.0179 | |
|
| 0.017 | 1.1246 | 125 | 0.0168 | |
|
| 0.0143 | 1.1695 | 130 | 0.0167 | |
|
| 0.0177 | 1.2144 | 135 | 0.0166 | |
|
| 0.0138 | 1.2593 | 140 | 0.0161 | |
|
| 0.0149 | 1.3042 | 145 | 0.0157 | |
|
| 0.0162 | 1.3490 | 150 | 0.0160 | |
|
| 0.0148 | 1.3939 | 155 | 0.0156 | |
|
| 0.0168 | 1.4388 | 160 | 0.0154 | |
|
| 0.0148 | 1.4837 | 165 | 0.0153 | |
|
| 0.0146 | 1.5286 | 170 | 0.0154 | |
|
| 0.0137 | 1.5735 | 175 | 0.0150 | |
|
| 0.0144 | 1.6184 | 180 | 0.0150 | |
|
| 0.0129 | 1.6633 | 185 | 0.0148 | |
|
| 0.0139 | 1.7082 | 190 | 0.0145 | |
|
| 0.013 | 1.7531 | 195 | 0.0145 | |
|
| 0.013 | 1.7980 | 200 | 0.0144 | |
|
| 0.0124 | 1.8429 | 205 | 0.0144 | |
|
| 0.0135 | 1.8878 | 210 | 0.0143 | |
|
| 0.0128 | 1.9327 | 215 | 0.0147 | |
|
| 0.0149 | 1.9776 | 220 | 0.0143 | |
|
| 0.0138 | 2.0247 | 225 | 0.0144 | |
|
| 0.0127 | 2.0696 | 230 | 0.0143 | |
|
| 0.0116 | 2.1145 | 235 | 0.0142 | |
|
| 0.0128 | 2.1594 | 240 | 0.0143 | |
|
| 0.0145 | 2.2043 | 245 | 0.0141 | |
|
| 0.0147 | 2.2492 | 250 | 0.0139 | |
|
| 0.0114 | 2.2941 | 255 | 0.0139 | |
|
| 0.0114 | 2.3389 | 260 | 0.0139 | |
|
| 0.0112 | 2.3838 | 265 | 0.0137 | |
|
| 0.0105 | 2.4287 | 270 | 0.0138 | |
|
| 0.0129 | 2.4736 | 275 | 0.0136 | |
|
| 0.014 | 2.5185 | 280 | 0.0135 | |
|
| 0.0124 | 2.5634 | 285 | 0.0136 | |
|
| 0.0128 | 2.6083 | 290 | 0.0133 | |
|
| 0.0106 | 2.6532 | 295 | 0.0129 | |
|
| 0.0099 | 2.6981 | 300 | 0.0129 | |
|
| 0.0111 | 2.7430 | 305 | 0.0129 | |
|
| 0.0129 | 2.7879 | 310 | 0.0129 | |
|
| 0.0088 | 2.8328 | 315 | 0.0129 | |
|
| 0.0092 | 2.8777 | 320 | 0.0130 | |
|
| 0.0086 | 2.9226 | 325 | 0.0129 | |
|
| 0.0132 | 2.9675 | 330 | 0.0126 | |
|
| 0.0126 | 3.0146 | 335 | 0.0130 | |
|
| 0.0117 | 3.0595 | 340 | 0.0133 | |
|
| 0.0102 | 3.1044 | 345 | 0.0132 | |
|
| 0.0074 | 3.1493 | 350 | 0.0132 | |
|
| 0.0105 | 3.1942 | 355 | 0.0129 | |
|
| 0.0117 | 3.2391 | 360 | 0.0129 | |
|
| 0.0107 | 3.2840 | 365 | 0.0127 | |
|
| 0.0098 | 3.3288 | 370 | 0.0128 | |
|
| 0.0092 | 3.3737 | 375 | 0.0127 | |
|
| 0.0114 | 3.4186 | 380 | 0.0126 | |
|
| 0.0118 | 3.4635 | 385 | 0.0125 | |
|
| 0.0108 | 3.5084 | 390 | 0.0123 | |
|
| 0.0092 | 3.5533 | 395 | 0.0123 | |
|
| 0.0085 | 3.5982 | 400 | 0.0123 | |
|
| 0.0088 | 3.6431 | 405 | 0.0126 | |
|
| 0.0095 | 3.6880 | 410 | 0.0124 | |
|
| 0.0072 | 3.7329 | 415 | 0.0124 | |
|
| 0.0105 | 3.7778 | 420 | 0.0123 | |
|
| 0.0115 | 3.8227 | 425 | 0.0122 | |
|
| 0.007 | 3.8676 | 430 | 0.0121 | |
|
| 0.0112 | 3.9125 | 435 | 0.0121 | |
|
| 0.0103 | 3.9574 | 440 | 0.0121 | |
|
| 0.0162 | 4.0045 | 445 | 0.0122 | |
|
| 0.0079 | 4.0494 | 450 | 0.0125 | |
|
| 0.0102 | 4.0943 | 455 | 0.0126 | |
|
| 0.0087 | 4.1392 | 460 | 0.0126 | |
|
| 0.0107 | 4.1841 | 465 | 0.0126 | |
|
| 0.0105 | 4.2290 | 470 | 0.0125 | |
|
| 0.0089 | 4.2738 | 475 | 0.0124 | |
|
| 0.0061 | 4.3187 | 480 | 0.0125 | |
|
| 0.0074 | 4.3636 | 485 | 0.0126 | |
|
| 0.008 | 4.4085 | 490 | 0.0126 | |
|
| 0.0092 | 4.4534 | 495 | 0.0125 | |
|
| 0.0092 | 4.4983 | 500 | 0.0125 | |
|
| 0.0061 | 4.5432 | 505 | 0.0124 | |
|
| 0.0089 | 4.5881 | 510 | 0.0124 | |
|
| 0.01 | 4.6330 | 515 | 0.0124 | |
|
| 0.0081 | 4.6779 | 520 | 0.0124 | |
|
| 0.0072 | 4.7228 | 525 | 0.0124 | |
|
| 0.0078 | 4.7677 | 530 | 0.0124 | |
|
| 0.009 | 4.8126 | 535 | 0.0124 | |
|
| 0.0106 | 4.8575 | 540 | 0.0124 | |
|
| 0.0079 | 4.9024 | 545 | 0.0124 | |
|
| 0.0082 | 4.9473 | 550 | 0.0124 | |
|
| 0.0082 | 4.9921 | 555 | 0.0124 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.46.1 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |