llm3br256

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the reliance dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25.0

Training results

Training Loss Epoch Step Validation Loss
0.0197 0.2024 25 0.0177
0.0118 0.4049 50 0.0114
0.0103 0.6073 75 0.0080
0.0091 0.8097 100 0.0072
0.003 1.0121 125 0.0060
0.0036 1.2146 150 0.0053
0.0052 1.4170 175 0.0049
0.0029 1.6194 200 0.0042
0.0017 1.8219 225 0.0039
0.0022 2.0243 250 0.0035
0.0027 2.2267 275 0.0032
0.0017 2.4291 300 0.0030
0.0012 2.6316 325 0.0028
0.002 2.8340 350 0.0025
0.0008 3.0364 375 0.0026
0.0012 3.2389 400 0.0025
0.0013 3.4413 425 0.0021
0.0008 3.6437 450 0.0019
0.0014 3.8462 475 0.0020
0.0009 4.0486 500 0.0020
0.0006 4.2510 525 0.0019
0.0005 4.4534 550 0.0018
0.0007 4.6559 575 0.0017
0.0004 4.8583 600 0.0016
0.0004 5.0607 625 0.0016
0.0004 5.2632 650 0.0015
0.0004 5.4656 675 0.0016
0.0005 5.6680 700 0.0015
0.0003 5.8704 725 0.0015
0.0006 6.0729 750 0.0016
0.0003 6.2753 775 0.0015
0.0003 6.4777 800 0.0015
0.0003 6.6802 825 0.0015
0.0004 6.8826 850 0.0014
0.0003 7.0850 875 0.0015
0.0004 7.2874 900 0.0014
0.0004 7.4899 925 0.0015
0.0004 7.6923 950 0.0014
0.0005 7.8947 975 0.0014
0.0003 8.0972 1000 0.0014
0.0003 8.2996 1025 0.0014
0.0003 8.5020 1050 0.0016
0.0003 8.7045 1075 0.0014
0.0003 8.9069 1100 0.0015
0.0003 9.1093 1125 0.0014
0.0004 9.3117 1150 0.0016
0.0002 9.5142 1175 0.0014
0.0005 9.7166 1200 0.0014
0.0002 9.9190 1225 0.0014
0.0002 10.1215 1250 0.0014
0.0002 10.3239 1275 0.0014
0.0002 10.5263 1300 0.0014
0.0002 10.7287 1325 0.0015

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sizhkhy/reliance

Adapter
(244)
this model