Built with Axolotl

See axolotl config

axolotl version: 0.5.2

base_model: meta-llama/Llama-3.1-8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false

flash_attention: true
xformers_attention:

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: skymizer/Llama3.1-base-tokenized-dolma-v1_7-50B
    train_on_split: train
    type: completion

test_datasets:
  - path: skymizer/Llama3.1-tokenized-dolma-v1_7-test
    split: test
    type: completion

is_preprocess: true
skip_prepare_dataset: true

dataset_prepared_path: /mnt/home/model-team/datasets/pretokenized/Llama3.1-8B-base-tokenized-dolma-v1_7_50B-4096 

hf_use_auth_token: true
output_dir: /mnt/home/model-team/models/Llama3.1-8B-v0.1-relu-stage-1-dolma-50B-4096
resume_from_checkpoint:
auto_resume_from_checkpoints: true

sequence_len: 4096
sample_packing: true
sample_packing_group_size: 100000
sample_packing_bin_size: 200
pad_to_sequence_len: true

eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]

wandb_project: "sparse-tuning-cpt"
wandb_entity:
wandb_watch:
wandb_name: "Llama3.1-8B-relu-stage-1-dolma-50B-4096"
wandb_log_model:

# global batch size = 2 * 8 * 8 GPUs * 8 Nodes * 4096 = 4M
gradient_accumulation_steps: 8
micro_batch_size: 2
  # eval_batch_size: 2
num_epochs: 1
optimizer: adamw_torch
learning_rate: 0.000015
lr_scheduler: cosine
cosine_min_lr_ratio: 1.0 
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

hub_model_id: "skymizer/Llama3.1-8B-relu-stage-1-dolma-v1_7-50B-4096"

save_strategy: "steps"
save_steps: 500

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1

warmup_steps: 1
eval_steps: 500
eval_table_size:
debug:
deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42

special_tokens:
  pad_token: "<|end_of_text|>"

Llama3.1-8B-relu-stage-1-dolma-v1_7-50B-4096

This model is a fine-tuned version of meta-llama/Llama-3.1-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 64
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 1024
  • total_eval_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
12.4769 0.0001 1 12.3278
2.4093 0.0414 500 2.5443
2.3647 0.0829 1000 2.4866
2.296 0.1243 1500 2.4571
2.3605 0.1657 2000 2.4387
2.2908 0.2072 2500 2.4244
2.2812 0.2486 3000 2.4136
2.2954 0.2901 3500 2.4053
2.2887 0.3315 4000 2.3983
2.2441 0.3729 4500 2.3918
2.2845 0.4144 5000 2.3869
2.2894 0.4558 5500 2.3819
2.2543 0.4972 6000 2.3777
2.2714 0.5387 6500 2.3748
2.2448 0.5801 7000 2.3710
2.2448 0.6215 7500 2.3678
2.257 0.6630 8000 2.3649
2.2472 0.7044 8500 2.3624
2.2296 0.7458 9000 2.3597
2.2142 0.7873 9500 2.3578
2.2296 0.8287 10000 2.3555
2.2403 0.8702 10500 2.3534
2.2306 0.9116 11000 2.3513
2.2483 0.9530 11500 2.3499
2.223 0.9945 12000 2.3481

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
9
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for skymizer/Llama3.1-8B-relu-stage-1-dolma-v1_7-50B-4096

Finetuned
(801)
this model
Quantizations
1 model