See axolotl config
axolotl version: 0.5.2
base_model: meta-llama/Llama-3.1-8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false
flash_attention: true
xformers_attention:
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: skymizer/Llama3.1-base-tokenized-dolma-v1_7-50B
train_on_split: train
type: completion
test_datasets:
- path: skymizer/Llama3.1-tokenized-dolma-v1_7-test
split: test
type: completion
is_preprocess: true
skip_prepare_dataset: true
dataset_prepared_path: /mnt/home/model-team/datasets/pretokenized/Llama3.1-8B-base-tokenized-dolma-v1_7_50B-4096
hf_use_auth_token: true
output_dir: /mnt/home/model-team/models/Llama3.1-8B-v0.1-relu-stage-1-dolma-50B-4096
resume_from_checkpoint:
auto_resume_from_checkpoints: true
sequence_len: 4096
sample_packing: true
sample_packing_group_size: 100000
sample_packing_bin_size: 200
pad_to_sequence_len: true
eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]
wandb_project: "sparse-tuning-cpt"
wandb_entity:
wandb_watch:
wandb_name: "Llama3.1-8B-relu-stage-1-dolma-50B-4096"
wandb_log_model:
# global batch size = 2 * 8 * 8 GPUs * 8 Nodes * 4096 = 4M
gradient_accumulation_steps: 8
micro_batch_size: 2
# eval_batch_size: 2
num_epochs: 1
optimizer: adamw_torch
learning_rate: 0.000015
lr_scheduler: cosine
cosine_min_lr_ratio: 1.0
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
hub_model_id: "skymizer/Llama3.1-8B-relu-stage-1-dolma-v1_7-50B-4096"
save_strategy: "steps"
save_steps: 500
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
warmup_steps: 1
eval_steps: 500
eval_table_size:
debug:
deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42
special_tokens:
pad_token: "<|end_of_text|>"
Llama3.1-8B-relu-stage-1-dolma-v1_7-50B-4096
This model is a fine-tuned version of meta-llama/Llama-3.1-8B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3481
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- gradient_accumulation_steps: 8
- total_train_batch_size: 1024
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
12.4769 | 0.0001 | 1 | 12.3278 |
2.4093 | 0.0414 | 500 | 2.5443 |
2.3647 | 0.0829 | 1000 | 2.4866 |
2.296 | 0.1243 | 1500 | 2.4571 |
2.3605 | 0.1657 | 2000 | 2.4387 |
2.2908 | 0.2072 | 2500 | 2.4244 |
2.2812 | 0.2486 | 3000 | 2.4136 |
2.2954 | 0.2901 | 3500 | 2.4053 |
2.2887 | 0.3315 | 4000 | 2.3983 |
2.2441 | 0.3729 | 4500 | 2.3918 |
2.2845 | 0.4144 | 5000 | 2.3869 |
2.2894 | 0.4558 | 5500 | 2.3819 |
2.2543 | 0.4972 | 6000 | 2.3777 |
2.2714 | 0.5387 | 6500 | 2.3748 |
2.2448 | 0.5801 | 7000 | 2.3710 |
2.2448 | 0.6215 | 7500 | 2.3678 |
2.257 | 0.6630 | 8000 | 2.3649 |
2.2472 | 0.7044 | 8500 | 2.3624 |
2.2296 | 0.7458 | 9000 | 2.3597 |
2.2142 | 0.7873 | 9500 | 2.3578 |
2.2296 | 0.8287 | 10000 | 2.3555 |
2.2403 | 0.8702 | 10500 | 2.3534 |
2.2306 | 0.9116 | 11000 | 2.3513 |
2.2483 | 0.9530 | 11500 | 2.3499 |
2.223 | 0.9945 | 12000 | 2.3481 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.