|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Any, List, Mapping, Optional |
|
|
|
from packaging import version |
|
|
|
from transformers import is_torch_available |
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer, TensorType |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.onnx import OnnxConfigWithPast, PatchingSpec |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CODIFY_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"smallcloudai/codify_medium_multi": "https://huggingface.co/smallcloudai/codify_medium_multi/blob/main/config.json", |
|
"smallcloudai/codify_3b_multi": "https://huggingface.co/smallcloudai/codify_3b_multi/blob/main/config.json", |
|
} |
|
|
|
|
|
class CodifyConfig(PretrainedConfig): |
|
model_type = "codify" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"num_hidden_layers": "L", |
|
"num_attention_heads": "attn_heads", |
|
"hidden_size": "E", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=51305, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
use_cache=True, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
mlp_mult=4, |
|
tie_word_embeddings=False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.mlp_mult = mlp_mult |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.use_cache = use_cache |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|
|
|
|
class CodifyOnnxConfig(OnnxConfigWithPast): |
|
torch_onnx_minimum_version = version.parse("1.12") |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
task: str = "default", |
|
patching_specs: List[PatchingSpec] = None, |
|
use_past: bool = False, |
|
): |
|
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) |
|
if not getattr(self._config, "pad_token_id", None): |
|
|
|
self._config.pad_token_id = 0 |
|
|
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) |
|
if self.use_past: |
|
|
|
self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True) |
|
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} |
|
else: |
|
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} |
|
|
|
return common_inputs |
|
|
|
@property |
|
def num_layers(self) -> int: |
|
return self._config.num_hidden_layers |
|
|
|
@property |
|
def num_attention_heads(self) -> int: |
|
return self._config.n_head |
|
|
|
@property |
|
def atol_for_validation(self) -> float: |
|
return 1e-3 |
|
|
|
def generate_dummy_inputs( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional["TensorType"] = None, |
|
) -> Mapping[str, Any]: |
|
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( |
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework |
|
) |
|
|
|
|
|
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) |
|
|
|
|
|
if self.use_past: |
|
if not is_torch_available(): |
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") |
|
else: |
|
import torch |
|
|
|
batch, seqlen = common_inputs["input_ids"].shape |
|
|
|
past_key_values_length = seqlen + 2 |
|
head_dim = self._config.hidden_size // self.num_attention_heads |
|
past_key_shape = ( |
|
batch * self.num_attention_heads, |
|
head_dim, |
|
past_key_values_length, |
|
) |
|
past_value_shape = ( |
|
batch * self.num_attention_heads, |
|
past_key_values_length, |
|
head_dim, |
|
) |
|
ordered_inputs["past_key_values"] = [ |
|
(torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers) |
|
] |
|
|
|
ordered_inputs["attention_mask"] = common_inputs["attention_mask"] |
|
if self.use_past: |
|
mask_dtype = ordered_inputs["attention_mask"].dtype |
|
ordered_inputs["attention_mask"] = torch.cat( |
|
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 |
|
) |
|
|
|
return ordered_inputs |
|
|
|
@property |
|
def default_onnx_opset(self) -> int: |
|
return 13 |
|
|
|
|
|
from transformers import AutoConfig |
|
|
|
AutoConfig.register(CodifyConfig.model_type, CodifyConfig) |
|
|