smallcloudteam
commited on
Commit
·
5cc155f
1
Parent(s):
f54e655
Upload config
Browse files- config.json +58 -0
- configuration_codify.py +152 -0
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"E": 2560,
|
3 |
+
"L": 32,
|
4 |
+
"T": 2048,
|
5 |
+
"_mup": true,
|
6 |
+
"alt_pw_klass": {
|
7 |
+
"type": ""
|
8 |
+
},
|
9 |
+
"alt_rel_klass": {
|
10 |
+
"fused": true,
|
11 |
+
"type": "alibi"
|
12 |
+
},
|
13 |
+
"alt_sa_klass": {
|
14 |
+
"triton": true,
|
15 |
+
"type": "flash",
|
16 |
+
"use_rotary_emb": null
|
17 |
+
},
|
18 |
+
"attn_a_reach": 2048,
|
19 |
+
"attn_b_reach": 2048,
|
20 |
+
"attn_heads": 40,
|
21 |
+
"attn_ra_nbasis": 64,
|
22 |
+
"attn_seq": [
|
23 |
+
"d"
|
24 |
+
],
|
25 |
+
"attn_sparse_layout_seq": null,
|
26 |
+
"auto_map": {
|
27 |
+
"AutoConfig": "configuration_codify.CodifyConfig"
|
28 |
+
},
|
29 |
+
"backcheck_pw": "inside",
|
30 |
+
"backcheck_sa": "none",
|
31 |
+
"bos_token_id": 1,
|
32 |
+
"dtype_acts": "torch.float16",
|
33 |
+
"dtype_weights": "torch.float16",
|
34 |
+
"enc_name": "openai_programming_v2",
|
35 |
+
"eos_token_id": 2,
|
36 |
+
"init_scale": 1,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"layer_norm_epsilon": 1e-05,
|
39 |
+
"mlp_mult": 4,
|
40 |
+
"model_type": "codify",
|
41 |
+
"moe": null,
|
42 |
+
"mup_optimal_lr": 0.0005,
|
43 |
+
"mup_shapes_file": "lean_former/mup/alibi_32l/shapes.json",
|
44 |
+
"posemb": false,
|
45 |
+
"rescale_embeddings": false,
|
46 |
+
"tie_word_embeddings": false,
|
47 |
+
"transformers_version": "4.24.0",
|
48 |
+
"tune": [
|
49 |
+
3,
|
50 |
+
3,
|
51 |
+
3,
|
52 |
+
3
|
53 |
+
],
|
54 |
+
"unembedding_shared": false,
|
55 |
+
"use_cache": true,
|
56 |
+
"use_res_scale": false,
|
57 |
+
"vocab_size": 51305
|
58 |
+
}
|
configuration_codify.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
|
3 |
+
|
4 |
+
from packaging import version
|
5 |
+
|
6 |
+
from transformers import is_torch_available
|
7 |
+
|
8 |
+
if TYPE_CHECKING:
|
9 |
+
from transformers import PreTrainedTokenizer, TensorType
|
10 |
+
|
11 |
+
from transformers.configuration_utils import PretrainedConfig
|
12 |
+
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
13 |
+
from transformers.utils import logging
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
CODIFY_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
18 |
+
"smallcloudai/codify_medium_multi": "https://huggingface.co/smallcloudai/codify_medium_multi/blob/main/config.json",
|
19 |
+
"smallcloudai/codify_3b_multi": "https://huggingface.co/smallcloudai/codify_3b_multi/blob/main/config.json",
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
class CodifyConfig(PretrainedConfig):
|
24 |
+
model_type = "codify"
|
25 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
26 |
+
attribute_map = {
|
27 |
+
"num_hidden_layers": "L",
|
28 |
+
"num_attention_heads": "attn_heads",
|
29 |
+
"hidden_size": "E",
|
30 |
+
}
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
vocab_size=51305,
|
35 |
+
layer_norm_epsilon=1e-5,
|
36 |
+
initializer_range=0.02,
|
37 |
+
use_cache=True,
|
38 |
+
bos_token_id=1,
|
39 |
+
eos_token_id=2,
|
40 |
+
mlp_mult=4,
|
41 |
+
tie_word_embeddings=False,
|
42 |
+
**kwargs,
|
43 |
+
):
|
44 |
+
self.vocab_size = vocab_size
|
45 |
+
self.mlp_mult = mlp_mult
|
46 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
47 |
+
self.initializer_range = initializer_range
|
48 |
+
self.use_cache = use_cache
|
49 |
+
|
50 |
+
self.bos_token_id = bos_token_id
|
51 |
+
self.eos_token_id = eos_token_id
|
52 |
+
|
53 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id,
|
54 |
+
tie_word_embeddings=tie_word_embeddings, **kwargs)
|
55 |
+
|
56 |
+
|
57 |
+
class CodifyOnnxConfig(OnnxConfigWithPast):
|
58 |
+
torch_onnx_minimum_version = version.parse("1.12")
|
59 |
+
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
config: PretrainedConfig,
|
63 |
+
task: str = "default",
|
64 |
+
patching_specs: List[PatchingSpec] = None,
|
65 |
+
use_past: bool = False,
|
66 |
+
):
|
67 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
68 |
+
if not getattr(self._config, "pad_token_id", None):
|
69 |
+
# TODO: how to do that better?
|
70 |
+
self._config.pad_token_id = 0
|
71 |
+
|
72 |
+
@property
|
73 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
74 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
75 |
+
if self.use_past:
|
76 |
+
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
|
77 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True)
|
78 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
79 |
+
else:
|
80 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
81 |
+
|
82 |
+
return common_inputs
|
83 |
+
|
84 |
+
@property
|
85 |
+
def num_layers(self) -> int:
|
86 |
+
return self._config.num_hidden_layers
|
87 |
+
|
88 |
+
@property
|
89 |
+
def num_attention_heads(self) -> int:
|
90 |
+
return self._config.n_head
|
91 |
+
|
92 |
+
@property
|
93 |
+
def atol_for_validation(self) -> float:
|
94 |
+
return 1e-3
|
95 |
+
|
96 |
+
def generate_dummy_inputs(
|
97 |
+
self,
|
98 |
+
tokenizer: "PreTrainedTokenizer",
|
99 |
+
batch_size: int = -1,
|
100 |
+
seq_length: int = -1,
|
101 |
+
is_pair: bool = False,
|
102 |
+
framework: Optional["TensorType"] = None,
|
103 |
+
) -> Mapping[str, Any]:
|
104 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
105 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
106 |
+
)
|
107 |
+
|
108 |
+
# We need to order the input in the way they appears in the forward()
|
109 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
110 |
+
|
111 |
+
# Need to add the past_keys
|
112 |
+
if self.use_past:
|
113 |
+
if not is_torch_available():
|
114 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
115 |
+
else:
|
116 |
+
import torch
|
117 |
+
|
118 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
119 |
+
# Not using the same length for past_key_values
|
120 |
+
past_key_values_length = seqlen + 2
|
121 |
+
head_dim = self._config.hidden_size // self.num_attention_heads
|
122 |
+
past_key_shape = (
|
123 |
+
batch * self.num_attention_heads,
|
124 |
+
head_dim,
|
125 |
+
past_key_values_length,
|
126 |
+
)
|
127 |
+
past_value_shape = (
|
128 |
+
batch * self.num_attention_heads,
|
129 |
+
past_key_values_length,
|
130 |
+
head_dim,
|
131 |
+
)
|
132 |
+
ordered_inputs["past_key_values"] = [
|
133 |
+
(torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers)
|
134 |
+
]
|
135 |
+
|
136 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
137 |
+
if self.use_past:
|
138 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
139 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
140 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
141 |
+
)
|
142 |
+
|
143 |
+
return ordered_inputs
|
144 |
+
|
145 |
+
@property
|
146 |
+
def default_onnx_opset(self) -> int:
|
147 |
+
return 13
|
148 |
+
|
149 |
+
|
150 |
+
from transformers import AutoConfig
|
151 |
+
|
152 |
+
AutoConfig.register(CodifyConfig.model_type, CodifyConfig)
|