If you want to create your own thinking model or do a better MistralThinker, I just uploaded my entire dataset made on Deepseek R1 and the axolotl config. (well I made them public)
Chain-of-Thought (CoT) prompting enhances reasoning in AI models by breaking down complex problems into step-by-step logical sequences. It continues proving its effectiveness, especially in top-performing reasoning models. However, there are other similar methods, that expand CoT and can be used for different purposes. Here are 9 of them:
4. Chain-of-RAG ->https://huggingface.co/papers/2501.14342 Creates retrieval chains, instead of retrieving all info at once. It can dynamically adjust its search process and its parameters like step number
9. Chain(s)-of-Knowledge -> https://www.turingpost.com/p/cok Enhance LLMs by dynamically pulling in external knowledge to improve accuracy and reduce errors
Meta AI vision has been cooking @facebook They shipped multiple models and demos for their papers at @ECCV🤗
Here's a compilation of my top picks: - Sapiens is family of foundation models for human-centric depth estimation, segmentation and more, all models have open weights and demos 👏
All models have their demos and even torchscript checkpoints! A collection of models and demos: facebook/sapiens-66d22047daa6402d565cb2fc - VFusion3D is state-of-the-art consistent 3D generation model from images