See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: true
chat_template: llama3
datasets:
- data_files:
- f96a5129ff7fb986_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f96a5129ff7fb986_train_data.json
type:
field_instruction: task_name
field_output: meta_info
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56/59c2eda2-c88e-47d1-ad10-99cf5c7714cd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/f96a5129ff7fb986_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 59c2eda2-c88e-47d1-ad10-99cf5c7714cd
wandb_project: god
wandb_run: srkv
wandb_runid: 59c2eda2-c88e-47d1-ad10-99cf5c7714cd
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
59c2eda2-c88e-47d1-ad10-99cf5c7714cd
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7098
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5398 | 0.0084 | 1 | 2.5376 |
2.1979 | 0.0420 | 5 | 2.5045 |
1.6824 | 0.0840 | 10 | 2.2800 |
1.972 | 0.1261 | 15 | 2.0205 |
1.481 | 0.1681 | 20 | 1.8793 |
1.7239 | 0.2101 | 25 | 1.7845 |
1.7557 | 0.2521 | 30 | 1.7457 |
1.3495 | 0.2941 | 35 | 1.7243 |
1.4501 | 0.3361 | 40 | 1.7142 |
1.4294 | 0.3782 | 45 | 1.7095 |
1.6555 | 0.4202 | 50 | 1.7098 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for sn56/59c2eda2-c88e-47d1-ad10-99cf5c7714cd
Base model
Qwen/Qwen2.5-1.5B