See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: elyza/Llama-3-ELYZA-JP-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8a34c82f4fcec0a6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8a34c82f4fcec0a6_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56/d52f364b-0870-4bf0-90f7-7d4940e808fe
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 90
micro_batch_size: 2
mlflow_experiment_name: /tmp/8a34c82f4fcec0a6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
seed: 2122986924
sequence_len: 2048
shuffle: true
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: ivjl
wandb_runid: null
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
d52f364b-0870-4bf0-90f7-7d4940e808fe
This model is a fine-tuned version of elyza/Llama-3-ELYZA-JP-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3648
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 2122986924
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 90
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0054 | 1 | 0.6262 |
0.5582 | 0.0433 | 8 | 0.5080 |
0.4572 | 0.0866 | 16 | 0.4493 |
0.4166 | 0.1299 | 24 | 0.4204 |
0.3891 | 0.1731 | 32 | 0.4024 |
0.3761 | 0.2164 | 40 | 0.3908 |
0.3759 | 0.2597 | 48 | 0.3820 |
0.3721 | 0.3030 | 56 | 0.3755 |
0.3617 | 0.3463 | 64 | 0.3706 |
0.3583 | 0.3896 | 72 | 0.3670 |
0.3537 | 0.4329 | 80 | 0.3653 |
0.3521 | 0.4762 | 88 | 0.3648 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for sn56/d52f364b-0870-4bf0-90f7-7d4940e808fe
Base model
elyza/Llama-3-ELYZA-JP-8B