See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- f14707e620deedc0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f14707e620deedc0_train_data.json
type:
field_input: problem
field_instruction: prompt
field_output: solution
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 2
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56a4/dc187fd5-fe0d-409d-9310-bf74d4d1830f
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
mlflow_experiment_name: /tmp/f14707e620deedc0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda-1_86943aac-324a-4dc3-afc7-638d0cb05ff9
pad_to_sequence_len: null
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
seed: 3600546949
sequence_len: 2048
shuffle: true
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_log_model: null
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: 3l5x
wandb_runid: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
dc187fd5-fe0d-409d-9310-bf74d4d1830f
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3676
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 3600546949
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7195 | 0.0001 | 1 | 0.9369 |
0.4704 | 0.5 | 8603 | 0.4708 |
0.2589 | 1.0 | 17206 | 0.3676 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0