See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 4c8e3ef2c206b838_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4c8e3ef2c206b838_train_data.json
type:
field_input: eval_solution
field_instruction: problem
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m3/2bb4fce6-966d-405c-8e32-3a9d757eaf7e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/4c8e3ef2c206b838_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 2bb4fce6-966d-405c-8e32-3a9d757eaf7e
wandb_project: god
wandb_run: jr17
wandb_runid: 2bb4fce6-966d-405c-8e32-3a9d757eaf7e
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
2bb4fce6-966d-405c-8e32-3a9d757eaf7e
This model is a fine-tuned version of HuggingFaceM4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.2736
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0284 | 1 | 10.3831 |
10.3776 | 0.2553 | 9 | 10.3789 |
10.3679 | 0.5106 | 18 | 10.3654 |
10.3483 | 0.7660 | 27 | 10.3421 |
13.012 | 1.0213 | 36 | 10.3126 |
10.3863 | 1.2766 | 45 | 10.2931 |
10.4675 | 1.5319 | 54 | 10.2836 |
10.285 | 1.7872 | 63 | 10.2787 |
12.8024 | 2.0426 | 72 | 10.2758 |
10.0497 | 2.2979 | 81 | 10.2743 |
10.1469 | 2.5532 | 90 | 10.2738 |
10.3743 | 2.8085 | 99 | 10.2736 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for sn56m3/2bb4fce6-966d-405c-8e32-3a9d757eaf7e
Base model
HuggingFaceM4/tiny-random-LlamaForCausalLM