See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: heegyu/WizardVicuna-open-llama-3b-v2
bf16: true
chat_template: llama3
datasets:
- data_files:
- f2dedbddc7d6df54_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f2dedbddc7d6df54_train_data.json
type:
field_input: structural_annotation
field_instruction: sequence
field_output: functional_annotation
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56m6/dabc7b26-2931-45b1-98db-c4dd39eb2ef1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/f2dedbddc7d6df54_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56m6/dabc7b26
wandb_project: god
wandb_run: 644m
wandb_runid: sn56m6/dabc7b26
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
e695784c-f228-4ea5-bcca-74b7e48d365b
This model is a fine-tuned version of heegyu/WizardVicuna-open-llama-3b-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1168
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3095 | 0.0006 | 1 | 0.4069 |
0.2916 | 0.0032 | 5 | 0.3486 |
0.1337 | 0.0064 | 10 | 0.1668 |
0.259 | 0.0096 | 15 | 0.1280 |
0.0738 | 0.0127 | 20 | 0.1188 |
0.0757 | 0.0159 | 25 | 0.1168 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56m6/dabc7b26-2931-45b1-98db-c4dd39eb2ef1
Base model
heegyu/WizardVicuna-open-llama-3b-v2