See axolotl config
axolotl version: 0.4.1
accelerate_config:
dynamo_backend: inductor
mixed_precision: bf16
num_machines: 1
num_processes: auto
use_cpu: false
adapter: lora
base_model: katuni4ka/tiny-random-olmo-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b6690a23f55f16f3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b6690a23f55f16f3_train_data.json
type:
field_instruction: question
field_output: anwser
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56z1/eaec9181-ee03-4eee-8278-c478524e1049
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/b6690a23f55f16f3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
quantization_config:
llm_int8_enable_fp32_cpu_offload: true
load_in_8bit: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56z1/eaec9181
wandb_project: god
wandb_run: mkz1
wandb_runid: sn56z1/eaec9181
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
8758a6a5-49c0-48ad-bde9-db9ee241b5af
This model is a fine-tuned version of katuni4ka/tiny-random-olmo-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.8037
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.8347 | 0.0001 | 1 | 10.8346 |
10.8252 | 0.0027 | 25 | 10.8270 |
10.8147 | 0.0053 | 50 | 10.8146 |
10.8071 | 0.0080 | 75 | 10.8054 |
10.8053 | 0.0107 | 100 | 10.8037 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Model tree for sn56z1/eaec9181-ee03-4eee-8278-c478524e1049
Base model
katuni4ka/tiny-random-olmo-hf