Built with Axolotl

See axolotl config

axolotl version: 0.4.1

accelerate_config:
  dynamo_backend: inductor
  mixed_precision: bf16
  num_machines: 1
  num_processes: auto
  use_cpu: false
adapter: lora
base_model: katuni4ka/tiny-random-olmo-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - b6690a23f55f16f3_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b6690a23f55f16f3_train_data.json
  type:
    field_instruction: question
    field_output: anwser
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56z1/eaec9181-ee03-4eee-8278-c478524e1049
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/b6690a23f55f16f3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
quantization_config:
  llm_int8_enable_fp32_cpu_offload: true
  load_in_8bit: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56z1/eaec9181
wandb_project: god
wandb_run: mkz1
wandb_runid: sn56z1/eaec9181
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

8758a6a5-49c0-48ad-bde9-db9ee241b5af

This model is a fine-tuned version of katuni4ka/tiny-random-olmo-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.8037

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
10.8347 0.0001 1 10.8346
10.8252 0.0027 25 10.8270
10.8147 0.0053 50 10.8146
10.8071 0.0080 75 10.8054
10.8053 0.0107 100 10.8037

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56z1/eaec9181-ee03-4eee-8278-c478524e1049

Adapter
(122)
this model