File size: 9,610 Bytes
570a855 973dd49 570a855 973dd49 793290c 973dd49 793290c 973dd49 793290c 973dd49 793290c 973dd49 793290c 973dd49 793290c 973dd49 793290c 973dd49 793290c 973dd49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
---
license: apache-2.0
datasets:
- imdb
language:
- en
metrics:
- f1
- accuracy
- recall
- precision
library_name: peft
---
# A Finetuned Bloom 1b1 Model for Sequence Classification
<!-- Provide a quick summary of what the model is/does. -->
The model was developed as a personal learning experience to fine tune a ready language model for Text Classification and to use it
on real life data from the internet to perform sentiment analysis.
It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
The model achieves the following scores on the evaluation set during the fine tuning:
![Screenshot 2024-01-03 at 16.08.46.png](https://cdn-uploads.huggingface.co/production/uploads/64857e2b745fb671250a5beb/26EB2jJDKI0gsnvjHA9WP.png)
Here is the train/ eval/ test split:
```
DatasetDict({
train: Dataset({
features: ['review', 'sentiment'],
num_rows: 36000
})
test: Dataset({
features: ['review', 'sentiment'],
num_rows: 5000
})
eval: Dataset({
features: ['review', 'sentiment'],
num_rows: 9000
})
})
```
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Snoop088
- **Model type:** Text Classification / Sequence Classification
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model: bigscience/bloom-1b1
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://huggingface.co/snoop088/imdb_tuned-bloom1b1-sentiment-classifier/tree/main
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
The model is intended to be used for Text Classification.
### Direct Use
Example script to use the model. Please note that this is peft adapter on the Bloom 1b model:
```
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
model_name = 'snoop088/imdb_tuned-bloom1b1-sentiment-classifier'
loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name,
trust_remote_code=True,
num_labels=2,
device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
my_set = pd.read_csv("./data/df_manual.csv")
inputs = tokenizer(list(my_set["review"]), truncation=True, padding="max_length", max_length=256, return_tensors="pt").to(DEVICE)
outputs = loaded_model(**inputs)
outcome = np.argmax(torch.Tensor.cpu(outputs.logits), axis=-1)
```
[More Information Needed]
### Downstream Use [optional]
The purpose of this model is to be used to perform sentiment analysis on a dataset similar to the one by IMDB. It should work well on product reviews, too in my opinion.
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
Training is done on the IMDB dataset available on the Hub:
[imdb](https://huggingface.co/datasets/imdb)
[More Information Needed]
### Training Procedure
```
training_arguments = TrainingArguments(
output_dir="your_tuned_model_name",
save_strategy="epoch",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
gradient_accumulation_steps=4,
optim="adamw_torch",
evaluation_strategy="steps",
logging_steps=5,
learning_rate=1e-5,
max_grad_norm = 0.3,
eval_steps=0.2,
num_train_epochs=2,
warmup_ratio= 0.1,
# group_by_length=True,
fp16=False,
weight_decay=0.001,
lr_scheduler_type="constant",
)
peft_model = get_peft_model(model, LoraConfig(
task_type="SEQ_CLS",
r=16,
lora_alpha=16,
target_modules=[
'query_key_value',
'dense'
],
bias="none",
lora_dropout=0.05, # Conventional
))
```
LORA results in: trainable params: 3,542,016 || all params: 1,068,859,392 || trainable%: 0.3313827830405592
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
Simple preprocessing with DataCollator:
```
def process_data(example):
item = tokenizer(example["review"], truncation=True, max_length=320) # see if this is OK for dyn padding
item["labels"] = [ 1 if sent == 'positive' else 0 for sent in example["sentiment"]]
return item
tokenised_data = tokenised_data.remove_columns(["review", "sentiment"])
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
```
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
Evaluation function:
```
import evaluate
def compute_metrics(eval_pred):
# All metrics are already predefined in the HF `evaluate` package
precision_metric = evaluate.load("precision")
recall_metric = evaluate.load("recall")
f1_metric= evaluate.load("f1")
accuracy_metric = evaluate.load("accuracy")
logits, labels = eval_pred # eval_pred is the tuple of predictions and labels returned by the model
predictions = np.argmax(logits, axis=-1)
precision = precision_metric.compute(predictions=predictions, references=labels)["precision"]
recall = recall_metric.compute(predictions=predictions, references=labels)["recall"]
f1 = f1_metric.compute(predictions=predictions, references=labels)["f1"]
accuracy = accuracy_metric.compute(predictions=predictions, references=labels)["accuracy"]
# The trainer is expecting a dictionary where the keys are the metrics names and the values are the scores.
return {"precision": precision, "recall": recall, "f1-score": f1, 'accuracy': accuracy}
```
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
- Model: 6.183.1 "13th Gen Intel(R) Core(TM) i9-13900K"
- GPU: Nvidia RTX 4900/ 24 GB
- Memory: 64 GB
#### Software
- python 3.11.6
- transformers 4.36.2
- torch 2.1.2
- peft 0.7.1
- numpy 1.26.2
- datasets 2.16.0
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|