chinese-bert-wwm-chinese_bert_wwm3

This model is a fine-tuned version of hfl/chinese-bert-wwm on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30.0

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 72 0.4251
No log 2.0 144 0.0282
No log 3.0 216 0.0048
No log 4.0 288 0.0018
No log 5.0 360 0.0011
No log 6.0 432 0.0006
0.483 7.0 504 0.0004
0.483 8.0 576 0.0004
0.483 9.0 648 0.0002
0.483 10.0 720 0.0002
0.483 11.0 792 0.0002
0.483 12.0 864 0.0001
0.483 13.0 936 0.0001
0.0031 14.0 1008 0.0001
0.0031 15.0 1080 0.0001
0.0031 16.0 1152 0.0001
0.0031 17.0 1224 0.0001
0.0031 18.0 1296 0.0001
0.0031 19.0 1368 0.0001
0.0031 20.0 1440 0.0001
0.0015 21.0 1512 0.0001
0.0015 22.0 1584 0.0001
0.0015 23.0 1656 0.0001
0.0015 24.0 1728 0.0001
0.0015 25.0 1800 0.0000
0.0015 26.0 1872 0.0001
0.0015 27.0 1944 0.0000
0.001 28.0 2016 0.0000
0.001 29.0 2088 0.0000
0.001 30.0 2160 0.0000

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.9.1
  • Datasets 1.13.3
  • Tokenizers 0.10.3
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.