File size: 2,770 Bytes
1d0787c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: chinese-bert-wwm-chinese_bert_wwm3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# chinese-bert-wwm-chinese_bert_wwm3

This model is a fine-tuned version of [hfl/chinese-bert-wwm](https://huggingface.co/hfl/chinese-bert-wwm) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 287  | 0.0094          |
| 0.6238        | 2.0   | 574  | 0.0008          |
| 0.6238        | 3.0   | 861  | 0.0003          |
| 0.0074        | 4.0   | 1148 | 0.0002          |
| 0.0074        | 5.0   | 1435 | 0.0002          |
| 0.003         | 6.0   | 1722 | 0.0001          |
| 0.0019        | 7.0   | 2009 | 0.0001          |
| 0.0019        | 8.0   | 2296 | 0.0001          |
| 0.0014        | 9.0   | 2583 | 0.0001          |
| 0.0014        | 10.0  | 2870 | 0.0000          |
| 0.0012        | 11.0  | 3157 | 0.0000          |
| 0.0012        | 12.0  | 3444 | 0.0000          |
| 0.0011        | 13.0  | 3731 | 0.0000          |
| 0.0008        | 14.0  | 4018 | 0.0000          |
| 0.0008        | 15.0  | 4305 | 0.0000          |
| 0.0006        | 16.0  | 4592 | 0.0000          |
| 0.0006        | 17.0  | 4879 | 0.0000          |
| 0.0006        | 18.0  | 5166 | 0.0000          |
| 0.0006        | 19.0  | 5453 | 0.0000          |
| 0.0005        | 20.0  | 5740 | 0.0000          |
| 0.0003        | 21.0  | 6027 | 0.0000          |
| 0.0003        | 22.0  | 6314 | 0.0000          |
| 0.0003        | 23.0  | 6601 | 0.0000          |
| 0.0003        | 24.0  | 6888 | 0.0000          |
| 0.0003        | 25.0  | 7175 | 0.0000          |
| 0.0003        | 26.0  | 7462 | 0.0000          |
| 0.0002        | 27.0  | 7749 | 0.0000          |
| 0.0002        | 28.0  | 8036 | 0.0000          |
| 0.0002        | 29.0  | 8323 | 0.0000          |
| 0.0002        | 30.0  | 8610 | 0.0000          |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.9.1
- Datasets 1.13.3
- Tokenizers 0.10.3