metadata
base_model: vinai/phobert-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: project-2
results: []
project-2
This model is a fine-tuned version of vinai/phobert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2549
- F1: 0.7177
- Roc Auc: 0.8111
- Accuracy: 0.6724
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.2526 | 1.0 | 73895 | 0.2578 | 0.7127 | 0.8065 | 0.6596 |
0.2367 | 2.0 | 147790 | 0.2549 | 0.7177 | 0.8111 | 0.6724 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2