flan-t5-base-cnn-samsum-lora
This model is a fine-tuned version of braindao/flan-t5-cnn on the samsum dataset.
The base model braindao/flan-t5-cnn is a fine-tuned verstion of google/flan-t5-base on the cnn_dailymail 3.0.0 dataset.
Model API Spaces
Please visit HF Spaces sooolee/summarize-transcripts-gradio for Gradio API. This API takes YouTube 'Video_ID' as the input.
Model description
- This model further finetuned braindao/flan-t5-cnn on the more conversational samsum dataset.
- Huggingface PEFT Library LoRA (r = 16) and bitsandbytes int-8 was used to speed up training and reduce the model size.
- Only 1.7M parameters were trained (0.71% of original flan-t5-base 250M parameters).
- The model checkpoint is just 7MB.
Intended uses & limitations
Summarize transcripts such as YouTube transcripts.
Training and evaluation data
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
- train_loss: 1.47
How to use
Note 'max_new_tokens=60' is used in the below example to control the length of the summary. FLAN-T5 model has max generation length = 200 and min generation length = 20 (default).
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load peft config for pre-trained checkpoint etc.
peft_model_id = "sooolee/flan-t5-base-cnn-samsum-lora"
config = PeftConfig.from_pretrained(peft_model_id)
# load base LLM model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, device_map='auto') # load_in_8bit=True,
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id, device_map='auto')
# Tokenize the text inputs
texts = "<e.g. Part of YouTube Transcript>"
inputs = tokenizer(texts, return_tensors="pt", padding=True, ) # truncation=True
# Make inferences
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
output = self.model.generate(input_ids=inputs["input_ids"].to(device), max_new_tokens=60, do_sample=True, top_p=0.9)
summary = self.tokenizer.batch_decode(output.detach().cpu().numpy(), skip_special_tokens=True)
summary
Framework versions
- Transformers 4.27.2
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.3
Other
Please check out the BART-Large-CNN-Samsum model fine-tuned for the same purpose: sooolee/bart-large-cnn-finetuned-samsum-lora
- Downloads last month
- 14
Inference API (serverless) does not yet support adapter-transformers models for this pipeline type.
Model tree for sooolee/flan-t5-base-cnn-samsum-lora
Base model
braindao/flan-t5-cnnDataset used to train sooolee/flan-t5-base-cnn-samsum-lora
Space using sooolee/flan-t5-base-cnn-samsum-lora 1
Evaluation results
- rogue1 on samsumvalidation set self-reported46.819522%
- rouge2 on samsumvalidation set self-reported20.898074%
- rougeL on samsumvalidation set self-reported37.300937%
- rougeLsum on samsumvalidation set self-reported37.271341%