metadata
base_model: sophiaaez/distilhubert_clone
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert_clone-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.82
distilhubert_clone-finetuned-gtzan
This model is a fine-tuned version of sophiaaez/distilhubert_clone on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6718
- Accuracy: 0.82
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9972 | 1.0 | 113 | 1.7844 | 0.52 |
1.4046 | 2.0 | 226 | 1.2909 | 0.63 |
1.1165 | 3.0 | 339 | 1.0493 | 0.69 |
0.879 | 4.0 | 452 | 0.8689 | 0.73 |
0.7814 | 5.0 | 565 | 0.7254 | 0.81 |
0.47 | 6.0 | 678 | 0.7432 | 0.79 |
0.5201 | 7.0 | 791 | 0.6523 | 0.81 |
0.2419 | 8.0 | 904 | 0.6086 | 0.83 |
0.375 | 9.0 | 1017 | 0.6481 | 0.82 |
0.249 | 10.0 | 1130 | 0.6718 | 0.82 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0