See axolotl config
axolotl version: 0.4.0
base_model: microsoft/Phi-3-mini-128k-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: sosoai/mixed_dataset
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./phi3-sft-out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 5
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_sample_packing: False
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
phi3-sft-out
This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2406
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.6772 | 0.0 | 1 | 1.3794 |
3.1471 | 0.25 | 175 | 1.2942 |
3.0306 | 0.5 | 350 | 1.2572 |
2.7486 | 0.75 | 525 | 1.2491 |
2.7702 | 1.0 | 700 | 1.2467 |
2.6302 | 1.24 | 875 | 1.2458 |
2.8356 | 1.49 | 1050 | 1.2436 |
2.7697 | 1.74 | 1225 | 1.2418 |
2.7226 | 2.0 | 1400 | 1.2415 |
2.7363 | 2.23 | 1575 | 1.2411 |
2.6754 | 2.48 | 1750 | 1.2407 |
2.9697 | 2.73 | 1925 | 1.2407 |
2.6213 | 2.99 | 2100 | 1.2406 |
2.6752 | 3.23 | 2275 | 1.2407 |
2.7226 | 3.48 | 2450 | 1.2404 |
2.6131 | 3.73 | 2625 | 1.2405 |
2.7255 | 3.98 | 2800 | 1.2404 |
2.7335 | 4.21 | 2975 | 1.2404 |
2.7924 | 4.46 | 3150 | 1.2406 |
2.6851 | 4.71 | 3325 | 1.2406 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sosoai/hansoldeco-phi3-128k-v0.1
Base model
microsoft/Phi-3-mini-128k-instruct