language: en tags:

  • pytorch
  • image-classification
  • cats-vs-dogs
  • computer-vision datasets:
  • microsoft/cats_vs_dogs model-index:
  • name: Dogs vs Cats Classifier results:
  • task: type: image-classification name: Image Classification metrics:
    • type: accuracy value: 93.25 name: Validation Accuracy
    • type: roc_auc value: 0.9942 name: ROC AUC
    • type: precision value: 0.9769 name: Precision
    • type: recall value: 0.9615 name: Recall
    • type: f1 value: 0.9691 name: F1-Score

license: mit

Dogs vs Cats Classifier

This model classifies images as either cats or dogs using a Convolutional Neural Network (CNN) architecture.

Model description

Architecture:

  • 4 convolutional blocks (Conv2D β†’ ReLU β†’ BatchNorm β†’ MaxPool)
  • Feature channels: 3β†’64β†’128β†’256β†’512
  • Global average pooling
  • Fully connected layers: 512β†’256β†’1
  • Binary classification output

Training

  • Dataset: microsoft/cats_vs_dogs
  • Training/Validation split: 80/20
  • Input size: 224x224 RGB images
  • Trained for 10 epochs
  • Best validation accuracy: 93.25%

Intended uses

  • Image classification between cats and dogs
  • Transfer learning base for similar pet/animal classification tasks

Limitations

  • Only trained on cats and dogs
  • May not perform well on:
  • Low quality/blurry images
  • Unusual angles/poses
  • Multiple animals in one image

Input

RGB images resized to 224x224 pixels, normalized using ImageNet statistics:

  • mean=[0.485, 0.456, 0.406]
  • std=[0.229, 0.224, 0.225]

khouya abd elhamid rak bacha bla mona9acha

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train soufyane/dogs-vs-cats