language: en tags:

  • pytorch
  • image-classification
  • cats-vs-dogs
  • computer-vision datasets:
  • microsoft/cats_vs_dogs model-index:
  • name: Dogs vs Cats Classifier results:
  • task: type: image-classification name: Image Classification metrics:
    • type: accuracy value: 93.25 name: Validation Accuracy
    • type: roc_auc value: 0.9942 name: ROC AUC
    • type: precision value: 0.9769 name: Precision
    • type: recall value: 0.9615 name: Recall
    • type: f1 value: 0.9691 name: F1-Score

license: mit

Dogs vs Cats Classifier

This model classifies images as either cats or dogs using a Convolutional Neural Network (CNN) architecture.

Model description

Architecture:

  • 4 convolutional blocks (Conv2D β†’ ReLU β†’ BatchNorm β†’ MaxPool)
  • Feature channels: 3β†’64β†’128β†’256β†’512
  • Global average pooling
  • Fully connected layers: 512β†’256β†’1
  • Binary classification output

Training

  • Dataset: microsoft/cats_vs_dogs
  • Training/Validation split: 80/20
  • Input size: 224x224 RGB images
  • Trained for 10 epochs
  • Best validation accuracy: 93.25%

Intended uses

  • Image classification between cats and dogs
  • Transfer learning base for similar pet/animal classification tasks

Limitations

  • Only trained on cats and dogs
  • May not perform well on:
  • Low quality/blurry images
  • Unusual angles/poses
  • Multiple animals in one image

Input

RGB images resized to 224x224 pixels, normalized using ImageNet statistics:

  • mean=[0.485, 0.456, 0.406]
  • std=[0.229, 0.224, 0.225]

khouya abd elhamid rak bacha bla mona9acha

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train soufyane/dogs-vs-cats