Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,856 Bytes
d3eafc5 2d2d1c7 7bb3c7f d3eafc5 a9ca915 2d2d1c7 401cafb 76d8c8d cc3fa22 2d2d1c7 a9ca915 49dfb30 894158a a9ca915 2b79c0f a9ca915 d3eafc5 2d2d1c7 d3eafc5 a9ca915 ebf45e8 a9ca915 925e298 cc3fa22 435ee7a 9d03fc2 6e146d4 4b0bdac be88b26 18e0122 a9ca915 c9d0c5b d3eafc5 cc3fa22 7ff7b7c 15ece72 839df15 b42e753 a9ca915 401cafb 839df15 4b0bdac 0c86826 0d9553f a9ca915 c3b6a89 a5def4e bf726f1 0cd7870 9680d6b d3eafc5 0d68287 c3b6a89 a41a9cf e52244f 401cafb 49fbe6b bf726f1 e52244f 401cafb 6c52595 d3eafc5 a9ca915 40fcec0 8cc70a1 40fcec0 a9ca915 925e298 6ebd597 d3eafc5 a9ca915 d3eafc5 3b480cb 2d2d1c7 bb1d03c 2d2d1c7 bb1d03c 6c52595 bb1d03c a9ca915 d3eafc5 a9ca915 d3eafc5 fd283e5 a9ca915 d3eafc5 da4a635 d3eafc5 a91770e e773b37 e6b1d9d 830033a 1b4088e 9508e95 1b4088e e773b37 401cafb 1b4088e a9ca915 36823d3 401cafb 2c1808f 401cafb c495cce db584b6 36823d3 a9ca915 6cf9565 5b4ec73 1b4088e a9ca915 9d03fc2 a9ca915 da4a635 a9ca915 a91770e 3338fd0 e6b1d9d 830033a a9ca915 9508e95 a9ca915 401cafb a9ca915 1b4088e 36823d3 401cafb 2c1808f 401cafb c495cce db584b6 36823d3 a9ca915 6cf9565 5b4ec73 36823d3 a9ca915 9d03fc2 a9ca915 da4a635 a9ca915 a91770e 3338fd0 e6b1d9d 830033a a9ca915 9508e95 a9ca915 401cafb a9ca915 36823d3 401cafb 2c1808f 401cafb c495cce db584b6 36823d3 a9ca915 6cf9565 5b4ec73 1b4088e d3eafc5 a9ca915 d3eafc5 a9ca915 d3eafc5 a9ca915 da4a635 d3eafc5 9d03fc2 d3eafc5 a9ca915 d3eafc5 a9ca915 d3eafc5 18e0122 d3eafc5 a224f2b d3eafc5 5f8ea16 d3eafc5 a9ca915 5b4ec73 a9ca915 5b4ec73 a9ca915 d3eafc5 a9ca915 d3eafc5 5b4ec73 d3eafc5 5f3c82e d3eafc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from typing import Tuple
import paramiko
import datetime
#import diffusers
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel, AutoencoderKL, EulerAncestralDiscreteScheduler
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
from transformers import CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
DESCRIPTIONXX = """
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester G) ⚡⚡⚡⚡
"""
examples = [
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw",
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]
MODEL_OPTIONS = {
"REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
}
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
text_encoder = CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder', token=True)#.to(device=device, dtype=torch.bfloat16)
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)
def load_and_prepare_model():
proc=Attention(query_dim=4, upcast_attention=True, upcast_softmax = True, processor = AttnProcessor2_0)
tokenizer_1 = CLIPTokenizer.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='tokenizer', token=True)
tokenizer_2 = CLIPTokenizer.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='tokenizer_2', token=True)
scheduler = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='scheduler', token=True)
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
unet = UNet2DConditionModel.from_pretrained("ford442/RealVisXL_V5.0_BF16", low_cpu_mem_usage=False, subfolder='unet', upcast_attention=True, attention_type='gated-text-image', token=True)
pipe = StableDiffusionXLPipeline.from_pretrained(
'ford442/RealVisXL_V5.0_BF16',
#torch_dtype=torch.bfloat16,
token=True,
add_watermarker=False,
text_encoder=None,
text_encoder_2=None,
#tokenizer=tokenizer_1,
#tokenizer_2=tokenizer_2,
scheduler=scheduler,
unet=unet,
vae=None,
)
#pipe.scheduler=scheduler
#pipe.tokenizer=tokenizer_1
#pipe.tokenizer_2=tokenizer_2
#pipe.unet=unet
#pipe.vae.do_resize=False
#pipe.vae.vae_scale_factor=8
#pipe.to(device)
#pipe.to(torch.bfloat16)
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
pipe.watermark=None
pipe.safety_checker=None
#pipe.unet.to(memory_format=torch.channels_last)
pipe.to(device,torch.bfloat16)
pipe.vae = vaeXL.to(device) #.to('cpu') #.to(torch.bfloat16)
pipe.vae.set_default_attn_processor()
return pipe
pipe = load_and_prepare_model()
vaeX = AutoencoderKL.from_pretrained('stabilityai/stable-diffusion-xl-refiner-1.0',subfolder='vae', token=HF_TOKEN) # ,use_safetensors=True FAILS
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"ford442/stable-diffusion-xl-refiner-1.0-bf16",
requires_aesthetics_score=True,
token=HF_TOKEN
)
refiner.vae.set_default_attn_processor()
refiner.to(device,torch.bfloat16)
refiner.vae=vaeX.to(device)
MAX_SEED = np.iinfo(np.int32).max
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
if filename.endswith(".txt"):
destination_path=FTP_DIR+'/txt/'+filename
else:
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name,optimize=False,compress_level=0)
return unique_name
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
filename= f'tst_G_{timestamp}.txt'
with open(filename, "w") as f:
f.write(f"Realvis 5.0 (Tester G) \n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
f.write(f"SPACE SETUP: \n")
f.write(f"To cuda and bfloat \n")
upload_to_ftp(filename)
@spaces.GPU(duration=30)
def generate_30(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True)
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "latent",
"denoising_end": 0.75,
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
batch_options = options.copy()
rv_image = pipe(**batch_options).images
options = {
"prompt": [prompt],
"image": rv_image,
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
"denoising_start": 0.75,
}
batch_options = options.copy()
rv_image = refiner(**batch_options).images[0]
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd_image_path = f"rv50_G_{timestamp}.png"
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(sd_image_path, unique_name)
return [unique_name]
@spaces.GPU(duration=60)
def generate_60(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True)
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "latent",
"denoising_end": 0.75,
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
batch_options = options.copy()
rv_image = pipe(**batch_options).images
options = {
"prompt": [prompt],
"image": rv_image,
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
"denoising_start": 0.75,
}
batch_options = options.copy()
rv_image = refiner(**batch_options).images[0]
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd_image_path = f"rv50_G_{timestamp}.png"
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(sd_image_path, unique_name)
return [unique_name]
@spaces.GPU(duration=90)
def generate_90(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True)
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "latent",
"denoising_end": 0.75,
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
batch_options = options.copy()
rv_image = pipe(**batch_options).images
options = {
"prompt": [prompt],
"image": rv_image,
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
"denoising_start": 0.75,
}
batch_options = options.copy()
rv_image = refiner(**batch_options).images[0]
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd_image_path = f"rv50_G_{timestamp}.png"
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(sd_image_path, unique_name)
return [unique_name]
def load_predefined_images1():
predefined_images1 = [
"assets/7.png",
"assets/8.png",
"assets/9.png",
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
]
return predefined_images1
css = '''
#col-container {
margin: 0 auto;
max-width: 640px;
}
h1{text-align:center}
footer {
visibility: hidden
}
body {
background-color: green;
}
'''
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Row():
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
visible=True,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30,
step=0.1,
value=3.8,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=1000,
step=10,
value=170,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
run_button_30.click,
],
# api_name="generate", # Add this line
fn=generate_30,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_60.click,
],
# api_name="generate", # Add this line
fn=generate_60,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_90.click,
],
# api_name="generate", # Add this line
fn=generate_90,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result],
)
gr.Markdown("### REALVISXL V5.0")
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
gr.Markdown(
"""
<div style="text-align: justify;">
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
</div>
""")
def text_generation(input_text, seed):
full_prompt = "Text Generator Application by ecarbo"
return full_prompt
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"
if __name__ == "__main__":
demo_interface = demo.queue(max_size=50) # Remove .launch() here
text_gen_interface = gr.Interface(
fn=text_generation,
inputs=[
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
gr.Number(value=10, label="Enter seed number")
],
outputs=gr.Textbox(label="Text Generated"),
title=title,
description=description,
)
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
combined_interface.launch(show_api=False) |