Spaces:
Running
Running
File size: 6,039 Bytes
01664b3 5ceacf4 01664b3 20c01c5 01664b3 5ceacf4 01664b3 6d737eb 01664b3 3c7feee 01664b3 6d737eb 01664b3 92d915f 5ceacf4 01664b3 5ceacf4 92d915f 5ceacf4 3c7feee 5ceacf4 92d915f 01664b3 5ceacf4 01664b3 92d915f 5ceacf4 92d915f 6d737eb 92d915f 6d737eb 92d915f 6d737eb 92d915f 6d737eb 01664b3 6d737eb 92d915f 6d737eb 01664b3 92d915f 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 6d737eb 01664b3 6d737eb 01664b3 92d915f 01664b3 92d915f 6d737eb 92d915f 20c01c5 01664b3 6d737eb 01664b3 20c01c5 5ceacf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os
import re
import shutil
import time
from types import SimpleNamespace
from typing import Any
import gradio as gr
import numpy as np
from detectron2 import engine
from PIL import Image
from inference import main, setup_cfg
# internal settings
NUM_PROCESSES = 1
CROP = False
SCORE_THRESHOLD = 0.8
MAX_PARTS = 5
ARGS = SimpleNamespace(
config_file="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
model=".data/models/motion_state_pred_opdformerp_rgb.pth",
input_format="RGB",
output=".output",
cpu=True,
)
NUM_SAMPLES = 10
outputs = {}
def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_samples: int) -> list[Any]:
global outputs
def find_images(path: str) -> dict[str, list[str]]:
"""Scrape folders for all generated gif files."""
images = {}
for file in os.listdir(path):
sub_path = os.path.join(path, file)
if os.path.isdir(sub_path):
images[file] = []
for image_file in sorted(os.listdir(sub_path)):
if re.match(r".*\.png$", image_file):
images[file].append(os.path.join(sub_path, image_file))
return images
# clear old predictions
os.makedirs(ARGS.output, exist_ok=True)
for path in os.listdir(ARGS.output):
full_path = os.path.join(ARGS.output, path)
if os.path.isdir(full_path):
shutil.rmtree(full_path)
else:
os.remove(full_path)
if not rgb_image:
gr.Error("You must provide an RGB image before running the model.")
return [None] * 5
if not depth_image:
gr.Error("You must provide a depth image before running the model.")
return [None] * 5
cfg = setup_cfg(ARGS)
engine.launch(
main,
NUM_PROCESSES,
args=(
cfg,
rgb_image,
depth_image,
intrinsics,
num_samples,
CROP,
SCORE_THRESHOLD,
),
)
# process output
# TODO: may want to select these in decreasing order of score
outputs[rgb_image] = []
image_files = find_images(ARGS.output)
for count, part in enumerate(image_files):
if count < MAX_PARTS:
outputs[rgb_image].append([Image.open(im) for im in image_files[part]])
return [
*[gr.update(value=out[0], visible=True) for out in outputs[rgb_image]],
*[gr.update(visible=False) for _ in range(MAX_PARTS - len(outputs))],
]
def get_trigger(idx: int, fps: int = 40, oscillate: bool = True):
def iter_images(rgb_image: str):
if not rgb_image or rgb_image not in outputs:
gr.Warning("You must upload an image and run the model before you can view the output.")
elif idx < len(outputs[rgb_image]):
for im in outputs[rgb_image][idx]:
time.sleep(1.0 / fps)
yield im
if oscillate:
for im in reversed(outputs[rgb_image][idx]):
time.sleep(1.0 / fps)
yield im
else:
gr.Error("Could not find any images to load into this module.")
return iter_images
def clear_outputs():
return [gr.update(value=None, visible=(idx == 0)) for idx in range(MAX_PARTS)]
with gr.Blocks() as demo:
gr.Markdown(
"""
# OPDMulti Demo
Upload an image to see its range of motion.
"""
)
# TODO: add gr.Examples
with gr.Row():
rgb_image = gr.Image(
image_mode="RGB", source="upload", type="filepath", label="RGB Image", show_label=True, interactive=True
)
depth_image = gr.Image(
image_mode="I;16", source="upload", type="filepath", label="Depth Image", show_label=True, interactive=True
)
intrinsics = gr.Dataframe(
value=[
[
214.85935872395834,
0.0,
125.90160319010417,
],
[
0.0,
214.85935872395834,
95.13726399739583,
],
[
0.0,
0.0,
1.0,
],
],
row_count=(3, "fixed"),
col_count=(3, "fixed"),
datatype="number",
type="numpy",
label="Intrinsics matrix",
show_label=True,
interactive=True,
)
num_samples = gr.Number(
value=NUM_SAMPLES,
label="Number of samples",
show_label=True,
interactive=True,
precision=0,
minimum=3,
maximum=20,
)
examples = gr.Examples(
examples=[
["examples/59-4860.png", "examples/59-4860_d.png"],
["examples/174-8460.png", "examples/174-8460_d.png"],
["examples/187-0.png", "examples/187-0_d.png"],
["examples/187-23040.png", "examples/187-23040_d.png"],
],
inputs=[rgb_image, depth_image],
api_name=False,
examples_per_page=2,
)
submit_btn = gr.Button("Run model")
explanation = gr.Markdown(value="# Output\nClick on an image to see an animation of the part motion.")
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
# identified.
images = [
gr.Image(type="pil", label=f"Part {idx + 1}", show_download_button=False, visible=(idx == 0))
for idx in range(MAX_PARTS)
]
for idx, image_comp in enumerate(images):
image_comp.select(get_trigger(idx), inputs=rgb_image, outputs=image_comp, api_name=False)
# if user changes input, clear output images
rgb_image.change(clear_outputs, inputs=[], outputs=images, api_name=False)
depth_image.change(clear_outputs, inputs=[], outputs=images, api_name=False)
submit_btn.click(
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=images, api_name=False
)
demo.queue(api_open=False)
demo.launch()
|