Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from transformers import AutoTokenizer, pipeline | |
# Initialize the model and tokenizer with environment variable for HF_TOKEN | |
model_name = "AIFS/Prometh-MOEM-V.01" | |
hf_token = os.getenv("HF_TOKEN") # More Pythonic way to fetch environment variables | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) | |
text_generation_pipeline = pipeline( | |
"text-generation", | |
model=model_name, | |
model_kwargs={"torch_dtype": "auto", "load_in_4bit": True}, # 'auto' lets PyTorch decide the most optimal dtype | |
use_auth_token=hf_token | |
) | |
def generate_text(user_input): | |
messages = [{"role": "user", "content": user_input}] | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
outputs = text_generation_pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
return outputs[0]["generated_text"] | |
# Updated Gradio interface creation to use the latest syntax | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(lines=2, placeholder="Type your question here..."), | |
outputs=gr.Textbox(), | |
title="Prometh-MOEM Text Generation", | |
description="A text generation model that understands your queries and generates concise, informative responses." | |
) | |
# Run the interface with enhanced parameters for better performance and user experience | |
iface.launch(enable_queue=True) # enable_queue=True for handling high traffic | |