Wtzwho's picture
Update app.py
5e835ad verified
raw
history blame
1.47 kB
import os
import gradio as gr
from transformers import AutoTokenizer, pipeline
# Initialize the model and tokenizer with environment variable for HF_TOKEN
model_name = "AIFS/Prometh-MOEM-V.01"
hf_token = os.getenv("HF_TOKEN") # More Pythonic way to fetch environment variables
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
text_generation_pipeline = pipeline(
"text-generation",
model=model_name,
model_kwargs={"torch_dtype": "auto", "load_in_4bit": True}, # 'auto' lets PyTorch decide the most optimal dtype
use_auth_token=hf_token
)
def generate_text(user_input):
messages = [{"role": "user", "content": user_input}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = text_generation_pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
return outputs[0]["generated_text"]
# Updated Gradio interface creation to use the latest syntax
iface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=2, placeholder="Type your question here..."),
outputs=gr.Textbox(),
title="Prometh-MOEM Text Generation",
description="A text generation model that understands your queries and generates concise, informative responses."
)
# Run the interface with enhanced parameters for better performance and user experience
iface.launch(enable_queue=True) # enable_queue=True for handling high traffic