Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the model and tokenizer from Hugging Face Model Hub | |
model_name = "ASaboor/Saboors_Bart_samsum" # Ensure this is correct | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Streamlit App | |
st.title("Summarization App") | |
st.write("This app uses a fine-tuned model to summarize text.") | |
# Text input | |
text = st.text_area("Enter text to summarize") | |
# Summarize button | |
if st.button("Summarize"): | |
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True) | |
summary_ids = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
st.write("Summary:") | |
st.write(summary) | |