Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import logging | |
import torch | |
import base64 | |
import rembg | |
import numpy as np | |
from io import BytesIO | |
from PIL import Image | |
from diffusers import ( | |
DiffusionPipeline, | |
EulerDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
DPMSolverSinglestepScheduler, | |
KDPM2DiscreteScheduler, | |
KDPM2AncestralDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LMSDiscreteScheduler, | |
DEISMultistepScheduler, | |
UniPCMultistepScheduler | |
) | |
import spaces | |
# Load LoRAs from JSON file | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
# Initialize the base model | |
base_model = "stabilityai/stable-diffusion-xl-base-1.0" | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16) | |
pipe.to("cuda") | |
def image_to_base64(image: Image) -> str: | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") # You can change the format as needed (e.g., "JPEG") | |
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
return img_base64 | |
def remove_bg(image: Image): | |
input_array_bg = np.array(image) | |
# Apply background removal using rembg | |
output_array_bg = rembg.remove(input_array_bg) | |
# Create a PIL Image from the output array | |
img = Image.fromarray(output_array_bg) | |
mask = img.convert('L') # Convert to grayscale | |
mask_array = np.array(mask) | |
# Create a binary mask (non-background areas are 255, background areas are 0) | |
binary_mask = mask_array > 0 | |
# Find the bounding box of the non-background areas | |
coords = np.argwhere(binary_mask) | |
x0, y0 = coords.min(axis=0) | |
x1, y1 = coords.max(axis=0) + 1 | |
# Crop the output image using the bounding box | |
cropped_output_image = img.crop((y0, x0, y1, x1)) | |
# Resize the cropped image to 1024x1024 | |
upscaled_image = cropped_output_image.resize((1024, 1024), Image.LANCZOS) | |
return upscaled_image | |
def update_selection(evt: gr.SelectData): | |
selected_lora = loras[evt.index] | |
new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
lora_repo = selected_lora["repo"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
return ( | |
gr.update(placeholder=new_placeholder), | |
updated_text, | |
evt.index | |
) | |
def run_lora(prompt, negative_prompt, cfg_scale, steps, scheduler, seed, width, height, lora_scale): | |
if selected_index is None: | |
raise gr.Error("You must select a LoRA before proceeding.") | |
# selected_lora = loras[selected_index] | |
# lora_path = selected_lora["repo"] | |
# trigger_word = selected_lora["trigger_word"] | |
# Load LoRA weights | |
pipe.load_lora_weights("Abdullah-Habib/lora-logo-v1",scale = 1) | |
# pipe.load_lora_weights("Abdullah-Habib/logolora",scale = 1) | |
# pipe.load_lora_weights("Abdullah-Habib/icon-lora",scale = 0.5) | |
# Set scheduler | |
scheduler_config = pipe.scheduler.config | |
if scheduler == "DPM++ 2M": | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config) | |
elif scheduler == "DPM++ 2M Karras": | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
elif scheduler == "DPM++ 2M SDE": | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, algorithm_type="sde-dpmsolver++") | |
elif scheduler == "DPM++ 2M SDE Karras": | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++") | |
elif scheduler == "DPM++ SDE": | |
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config) | |
elif scheduler == "DPM++ SDE Karras": | |
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
elif scheduler == "DPM2": | |
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config) | |
elif scheduler == "DPM2 Karras": | |
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
elif scheduler == "DPM2 a": | |
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler == "DPM2 a Karras": | |
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
elif scheduler == "Euler": | |
pipe.scheduler = EulerDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler == "Euler a": | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler == "Heun": | |
pipe.scheduler = HeunDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler == "LMS": | |
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler == "LMS Karras": | |
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True) | |
elif scheduler == "DEIS": | |
pipe.scheduler = DEISMultistepScheduler.from_config(scheduler_config) | |
elif scheduler == "UniPC": | |
pipe.scheduler = UniPCMultistepScheduler.from_config(scheduler_config) | |
# Set random seed for reproducibility | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
# Generate image | |
image = pipe( | |
prompt=f"{prompt}, rounded square, logo, logoredmaf, icons", | |
negative_prompt=negative_prompt, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
# cross_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
# Unload LoRA weights | |
pipe.unload_lora_weights() | |
image_without_bg = remove_bg(image) | |
return image_to_base64(image_without_bg) | |
with gr.Blocks(theme=gr.themes.Soft()) as app: | |
selected_index = gr.State(None) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
result = gr.Text(label="Generated Image") | |
generate_button = gr.Button("Generate", variant="primary") | |
# with gr.Column(scale=1): | |
# gallery = gr.Gallery( | |
# [(item["image"], item["title"]) for item in loras], | |
# label="LoRA Gallery", | |
# allow_preview=False, | |
# columns=2 | |
# ) | |
with gr.Row(): | |
with gr.Column(): | |
prompt_title = "" | |
selected_info = gr.Markdown("") | |
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Please enter a prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry") | |
with gr.Column(): | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1) | |
scheduler = gr.Dropdown( | |
label="Scheduler", | |
choices=[ | |
"DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras", | |
"DPM++ SDE", "DPM++ SDE Karras", "DPM2", "DPM2 Karras", "DPM2 a", "DPM2 a Karras", | |
"Euler", "Euler a", "Heun", "LMS", "LMS Karras", "DEIS", "UniPC" | |
], | |
value="DPM++ 2M SDE Karras" | |
) | |
# gallery.select(update_selection, outputs=[prompt, selected_info, selected_index]) | |
generate_button.click( | |
fn=run_lora, | |
inputs=[prompt, negative_prompt, cfg_scale, steps, scheduler, seed, width, height, lora_scale], | |
outputs=[result] | |
) | |
app.queue() | |
app.launch() | |