lora-logo-gen-2 / app.py
Abdullah-Habib's picture
Update app.py
7797f1d verified
import gradio as gr
import json
import logging
import torch
import base64
import rembg
import numpy as np
from io import BytesIO
from PIL import Image
from diffusers import (
DiffusionPipeline,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
DEISMultistepScheduler,
UniPCMultistepScheduler
)
import spaces
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16)
pipe.to("cuda")
def image_to_base64(image: Image) -> str:
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change the format as needed (e.g., "JPEG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_base64
def remove_bg(image: Image):
input_array_bg = np.array(image)
# Apply background removal using rembg
output_array_bg = rembg.remove(input_array_bg)
# Create a PIL Image from the output array
img = Image.fromarray(output_array_bg)
mask = img.convert('L') # Convert to grayscale
mask_array = np.array(mask)
# Create a binary mask (non-background areas are 255, background areas are 0)
binary_mask = mask_array > 0
# Find the bounding box of the non-background areas
coords = np.argwhere(binary_mask)
x0, y0 = coords.min(axis=0)
x1, y1 = coords.max(axis=0) + 1
# Crop the output image using the bounding box
cropped_output_image = img.crop((y0, x0, y1, x1))
# Resize the cropped image to 1024x1024
upscaled_image = cropped_output_image.resize((1024, 1024), Image.LANCZOS)
return upscaled_image
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index
)
@spaces.GPU
def run_lora(prompt, negative_prompt, cfg_scale, steps, scheduler, seed, width, height, lora_scale):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
# selected_lora = loras[selected_index]
# lora_path = selected_lora["repo"]
# trigger_word = selected_lora["trigger_word"]
# Load LoRA weights
pipe.load_lora_weights("Abdullah-Habib/lora-logo-v1",scale = 1)
# pipe.load_lora_weights("Abdullah-Habib/logolora",scale = 1)
# pipe.load_lora_weights("Abdullah-Habib/icon-lora",scale = 0.5)
# Set scheduler
scheduler_config = pipe.scheduler.config
if scheduler == "DPM++ 2M":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)
elif scheduler == "DPM++ 2M Karras":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DPM++ 2M SDE":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, algorithm_type="sde-dpmsolver++")
elif scheduler == "DPM++ 2M SDE Karras":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
elif scheduler == "DPM++ SDE":
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config)
elif scheduler == "DPM++ SDE Karras":
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DPM2":
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config)
elif scheduler == "DPM2 Karras":
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DPM2 a":
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "DPM2 a Karras":
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "Euler":
pipe.scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "Euler a":
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "Heun":
pipe.scheduler = HeunDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "LMS":
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "LMS Karras":
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DEIS":
pipe.scheduler = DEISMultistepScheduler.from_config(scheduler_config)
elif scheduler == "UniPC":
pipe.scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
# Set random seed for reproducibility
generator = torch.Generator(device="cuda").manual_seed(seed)
# Generate image
image = pipe(
prompt=f"{prompt}, rounded square, logo, logoredmaf, icons",
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
# cross_attention_kwargs={"scale": lora_scale},
).images[0]
# Unload LoRA weights
pipe.unload_lora_weights()
image_without_bg = remove_bg(image)
return image_to_base64(image_without_bg)
with gr.Blocks(theme=gr.themes.Soft()) as app:
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=2):
result = gr.Text(label="Generated Image")
generate_button = gr.Button("Generate", variant="primary")
# with gr.Column(scale=1):
# gallery = gr.Gallery(
# [(item["image"], item["title"]) for item in loras],
# label="LoRA Gallery",
# allow_preview=False,
# columns=2
# )
with gr.Row():
with gr.Column():
prompt_title = ""
selected_info = gr.Markdown("")
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Please enter a prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1)
scheduler = gr.Dropdown(
label="Scheduler",
choices=[
"DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras",
"DPM++ SDE", "DPM++ SDE Karras", "DPM2", "DPM2 Karras", "DPM2 a", "DPM2 a Karras",
"Euler", "Euler a", "Heun", "LMS", "LMS Karras", "DEIS", "UniPC"
],
value="DPM++ 2M SDE Karras"
)
# gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
generate_button.click(
fn=run_lora,
inputs=[prompt, negative_prompt, cfg_scale, steps, scheduler, seed, width, height, lora_scale],
outputs=[result]
)
app.queue()
app.launch()