Spaces:
Running
Running
import gradio as gr | |
from langchain.document_loaders import OnlinePDFLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.llms import HuggingFaceHub | |
from langchain.embeddings import HuggingFaceHubEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.chains import RetrievalQA | |
def loading_pdf(): return 'Loading...' | |
def pdf_changes(pdf_doc, repo_id): | |
loader = OnlinePDFLoader(pdf_doc.name) | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=2096, chunk_overlap=0) | |
texts = text_splitter.split_documents(documents) | |
embeddings = HuggingFaceHubEmbeddings() | |
db = Chroma.from_documents(texts, embeddings) | |
retriever = db.as_retriever() | |
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={'temperature': 0.5, 'max_new_tokens': 2096}) | |
global qa | |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=retriever, return_source_documents=True) | |
return "Ready" | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, '' | |
def bot(history): | |
response = infer(history[-1][0]) | |
history[-1][1] = response['result'] | |
return history | |
def infer(question): | |
query = question | |
result = qa({'query': query}) | |
return result | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<h1>Chat with PDF</h1> | |
""" | |
with gr.Blocks(css=css, theme='Taithrah/Minimal') as demo: | |
with gr.Column(elem_id='col-container'): | |
gr.HTML(title) | |
with gr.Column(): | |
pdf_doc = gr.File(label='Upload a PDF', file_types=['.pdf']) | |
repo_id = gr.Dropdown(label='LLM', | |
choices=[ | |
'mistralai/Mistral-7B-Instruct-v0.1', | |
'HuggingFaceH4/zephyr-7b-beta', | |
'meta-llama/Llama-2-7b-chat-hf', | |
'01-ai/Yi-6B-200K' | |
'cognitivecomputations/dolphin-2.5-mixtral-8x7b' | |
], | |
value='mistralai/Mistral-7B-Instruct-v0.1') | |
with gr.Row(): | |
langchain_status = gr.Textbox(label='Status', placeholder='', interactive=False) | |
load_pdf = gr.Button('Load PDF to LangChain') | |
chatbot = gr.Chatbot([], elem_id='chatbot')#.style(height=350) | |
question = gr.Textbox(label='Question', placeholder='Type your query') | |
submit_btn = gr.Button('Send') | |
repo_id.change(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False) | |
load_pdf.click(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False) | |
question.submit(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot) | |
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot) | |
demo.launch() |